1
|
Dahal UP, Gilbert AM, Obach RS, Flanagan ME, Chen JM, Garcia-Irizarry C, Starr JT, Schuff B, Uccello DP, Young JA. Intrinsic reactivity profile of electrophilic moieties to guide covalent drug design: N-α-acetyl-l-lysine as an amine nucleophile. MEDCHEMCOMM 2016. [DOI: 10.1039/c6md00017g] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covalent drugs contain a reactive electrophilic moiety or covalent reactive group (CRG), which forms an irreversible bond between the drug and a biological target.
Collapse
Affiliation(s)
- Upendra P. Dahal
- Pharmacokinetics
- Dynamics and Metabolism
- Pfizer Worldwide Research and Development
- Groton
- USA
| | - Adam M. Gilbert
- Worldwide Medicinal Chemistry
- Pfizer Worldwide Research and Development
- Groton
- USA
| | - R. Scott Obach
- Pharmacokinetics
- Dynamics and Metabolism
- Pfizer Worldwide Research and Development
- Groton
- USA
| | - Mark E. Flanagan
- Worldwide Medicinal Chemistry
- Pfizer Worldwide Research and Development
- Groton
- USA
| | - Jinshan M. Chen
- Worldwide Medicinal Chemistry
- Pfizer Worldwide Research and Development
- Groton
- USA
| | | | - Jeremy T. Starr
- Worldwide Medicinal Chemistry
- Pfizer Worldwide Research and Development
- Groton
- USA
| | - Brandon Schuff
- Worldwide Medicinal Chemistry
- Pfizer Worldwide Research and Development
- Groton
- USA
| | - Daniel P. Uccello
- Worldwide Medicinal Chemistry
- Pfizer Worldwide Research and Development
- Groton
- USA
| | - Jennifer A. Young
- Worldwide Medicinal Chemistry
- Pfizer Worldwide Research and Development
- Groton
- USA
| |
Collapse
|
2
|
de Diego I, Veillard F, Sztukowska MN, Guevara T, Potempa B, Pomowski A, Huntington JA, Potempa J, Gomis-Rüth FX. Structure and mechanism of cysteine peptidase gingipain K (Kgp), a major virulence factor of Porphyromonas gingivalis in periodontitis. J Biol Chem 2014; 289:32291-32302. [PMID: 25266723 DOI: 10.1074/jbc.m114.602052] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cysteine peptidases are key proteolytic virulence factors of the periodontopathogen Porphyromonas gingivalis, which causes chronic periodontitis, the most prevalent dysbiosis-driven disease in humans. Two peptidases, gingipain K (Kgp) and R (RgpA and RgpB), which differ in their selectivity after lysines and arginines, respectively, collectively account for 85% of the extracellular proteolytic activity of P. gingivalis at the site of infection. Therefore, they are promising targets for the design of specific inhibitors. Although the structure of the catalytic domain of RgpB is known, little is known about Kgp, which shares only 27% sequence identity. We report the high resolution crystal structure of a competent fragment of Kgp encompassing the catalytic cysteine peptidase domain and a downstream immunoglobulin superfamily-like domain, which is required for folding and secretion of Kgp in vivo. The structure, which strikingly resembles a tooth, was serendipitously trapped with a fragment of a covalent inhibitor targeting the catalytic cysteine. This provided accurate insight into the active site and suggested that catalysis may require a catalytic triad, Cys(477)-His(444)-Asp(388), rather than the cysteine-histidine dyad normally found in cysteine peptidases. In addition, a 20-Å-long solvent-filled interior channel traverses the molecule and links the bottom of the specificity pocket with the molecular surface opposite the active site cleft. This channel, absent in RgpB, may enhance the plasticity of the enzyme, which would explain the much lower activity in vitro toward comparable specific synthetic substrates. Overall, the present results report the architecture and molecular determinants of the working mechanism of Kgp, including interaction with its substrates.
Collapse
Affiliation(s)
- Iñaki de Diego
- Proteolysis Lab, Molecular Biology Institute of Barcelona, Spanish Research Council (Consejo Superior de Investigaciones Cientificas), Barcelona Science Park, Helix Building, Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain
| | - Florian Veillard
- Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, Kentucky 40202
| | - Maryta N Sztukowska
- Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, Kentucky 40202
| | - Tibisay Guevara
- Proteolysis Lab, Molecular Biology Institute of Barcelona, Spanish Research Council (Consejo Superior de Investigaciones Cientificas), Barcelona Science Park, Helix Building, Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain
| | - Barbara Potempa
- Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, Kentucky 40202
| | - Anja Pomowski
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - James A Huntington
- Department of Haematology, University of Cambridge, Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Jan Potempa
- Oral Immunology and Infectious Disease, University of Louisville School of Dentistry, Louisville, Kentucky 40202,; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland, and.
| | - F Xavier Gomis-Rüth
- Proteolysis Lab, Molecular Biology Institute of Barcelona, Spanish Research Council (Consejo Superior de Investigaciones Cientificas), Barcelona Science Park, Helix Building, Baldiri Reixac 15-21, 08028 Barcelona, Catalonia, Spain,.
| |
Collapse
|