1
|
Rezaie ES, Visser NJ, van den Berg C, Shin AY, Bishop AT. Vasculogenic gene therapy: No role for revitalization of structural bone allografts. J Orthop Res 2023; 41:1014-1021. [PMID: 36058614 PMCID: PMC9984671 DOI: 10.1002/jor.25438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/08/2022] [Accepted: 08/29/2022] [Indexed: 02/04/2023]
Abstract
Segmental bone defects are often performed with cryopreserved allografts. They provide immediate stability, but risk nonunion, infection and late stress fracture. Improving the rate and extent of bone revitalization may improve results. Angiogenesis from surgically placed arteriovenous (AV) bundles improves bone blood flow and vitality in cryopreserved rat femora, augmented by vasculogenic growth factors. This study tests the same principal in Yucatan mini-pigs with a tibial diaphyseal defect, combining surgical angiogenesis with angiogenic gene therapy within cryopreserved orthotopically-placed allografts. Tibial diaphyseal defects were reconstructed with cryopreserved allografts and rigid internal fixation in 16 mini pigs. Half of the cranial tibial AV bundles placed within the allograft medullary canal were transfected with an adeno-associated virus containing vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) genes (AAV9.VEGF.PDGF). Bone remodeling, angiogenesis, and allograft healing were assessed. During the postoperative survival period 5 of 8 transfected animals developed cutaneous benign vascular lesions at sites remote from the operated hindlimb, causing excessive bleeding. Within the allograft, both medullary (p = 0.013) and cortical (p = 0.009) vascular volumes were higher and vessels more mature than nontransfected allografts. Bone turnover (p = 0.013), bone mineralization (p = 0.018), bone healing (p = 0.008) and graft incorporation (p = 0.006) were all significantly higher in the gene therapy group. In a large animal tibial defect model, gene therapy of implanted AV bundles improved revascularization, remodeling and healing of cryopreserved allografts used for limb reconstruction. However, benign vascular lesions causing excessive bleeding developed in 5 out of 8 pigs transfected with AAV containing genes for VEGF and PDGF. This unforeseen complication makes vasculogenic gene therapy unacceptable for clinical use.
Collapse
Affiliation(s)
- Elisa S Rezaie
- Department of Plastic-Reconstructive and Hand Surgery, Amsterdam University Medical Centre-Academic Medical Centre, Amsterdam, The Netherlands
| | - Noortje J Visser
- Department of Plastic-Reconstructive and Hand Surgery, Amsterdam University Medical Centre-Academic Medical Centre, Amsterdam, The Netherlands
| | - Catherine van den Berg
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Alexander Y Shin
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Allen T Bishop
- Microvascular Research Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Bougioukli S, Chateau M, Morales H, Vakhshori V, Sugiyama O, Oakes D, Longjohn D, Cannon P, Lieberman JR. Limited potential of AAV-mediated gene therapy in transducing human mesenchymal stem cells for bone repair applications. Gene Ther 2021; 28:729-739. [PMID: 32807899 DOI: 10.1038/s41434-020-0182-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 07/01/2020] [Accepted: 07/22/2020] [Indexed: 12/26/2022]
Abstract
Adeno-associated viral vectors (AAV) are unique in their ability to transduce a variety of both dividing and nondividing cells, with significantly lower risk of random genomic integration and with no known pathogenicity in humans, but their role in ex vivo regional gene therapy for bone repair has not been definitively established. The goal of this study was to test the ability of AAV vectors carrying the cDNA for BMP-2 to transduce human mesenchymal stem cells (MSCs), produce BMP-2, and induce osteogenesis in vitro as compared with lentiviral gene therapy with a two-step transcriptional amplification system lentiviral vector (LV-TSTA). To this end, we created two AAV vectors (serotypes 2 and 6) expressing the target transgene; eGFP or BMP-2. Transduction of human MSCs isolated from bone marrow (BMSCs) or adipose tissue (ASCs) with AAV2-eGFP and AAV6-eGFP led to low transduction efficiency (BMSCs: 3.57% and 8.82%, respectively, ASCs: 6.17 and 20.2%, respectively) and mean fluorescence intensity as seen with FACS analysis 7 days following transduction, even at MOIs as high as 106. In contrast, strong eGFP expression was detectable in all of the cell types post transduction with LV-TSTA-eGFP. Transduction with BMP-2 producing vectors led to minimal BMP-2 production in AAV-transduced cells 2 and 7 days following transduction. In addition, transduction of ASCs and BMSCs with AAV2-BMP-2 and AAV6-BMP-2 did not enhance their osteogenic potential as seen with an alizarin red assay. In contrast, the LV-TSTA-BMP-2-transduced cells were characterized by an abundant BMP-2 production and induction of the osteogenic phenotype in vitro (p < 0.001 vs. AAV2 and 6). Our results demonstrate that the AAV2 and AAV6 vectors cannot induce a significant transgene expression in human BMSCs and ASCs, even at MOIs as high as 106. The LV-TSTA vector is significantly superior in transducing human MSCs; thus this vector would be preferable when developing an ex vivo regional gene therapy strategy for clinical use in orthopedic surgery applications.
Collapse
Affiliation(s)
- Sofia Bougioukli
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| | - Morgan Chateau
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Heidy Morales
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Venus Vakhshori
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Osamu Sugiyama
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Daniel Oakes
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Donald Longjohn
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Paula Cannon
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jay R Lieberman
- Department of Orthopaedic Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
3
|
Arabipour I, Amani J, Mirhosseini SA, Salimian J. The study of genes and signal transduction pathways involved in mustard lung injury: A gene therapy approach. Gene 2019; 714:143968. [PMID: 31323308 DOI: 10.1016/j.gene.2019.143968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 07/06/2019] [Accepted: 07/08/2019] [Indexed: 02/06/2023]
Abstract
Sulfur mustard (SM) is a destructive and harmful chemical agent for the eyes, skin and lungs that causes short-term and long-term lesions and was widely used in Iraq war against Iran (1980-1988). SM causes DNA damages, oxidative stress, and Inflammation. Considering the similarities between SM and COPD (Chronic Obstructive Pulmonary Disease) pathogens and limited available treatments, a novel therapeutic approach is not developed. Gene therapy is a novel therapeutic approach that uses genetic engineering science in treatment of most diseases including chronic obstructive pulmonary disease. In this review, attempts to presenting a comprehensive study of mustard lung and introducing the genes therapy involved in chronic obstructive pulmonary disease and emphasizing the pathways and genes involved in the pathology and pathogenesis of sulfur Mustard. It seems that, given the high potential of gene therapy and the fact that this experimental technique is a candidate for the treatment of pulmonary diseases, further study of genes, vectors and gene transfer systems can draw a very positive perspective of gene therapy in near future.
Collapse
Affiliation(s)
- Iman Arabipour
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Seyed Ali Mirhosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Jafar Salimian
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Intra-luminal gene therapy in the porcine artery using a recombinant adeno-associated virus 9. Gene 2017; 618:24-27. [PMID: 28322993 DOI: 10.1016/j.gene.2017.03.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Revised: 02/22/2017] [Accepted: 03/16/2017] [Indexed: 11/22/2022]
Abstract
The ability to improve or restore blood flow and promote healing in ischemic tissue has many potential clinical applications. Augmentation by direct delivery of growth factors may further enhance results, but requires a method for sustained delivery. In this study, we have tested the ability of adeno-associated virus 9 (AAV9) delivered within the lumen of a porcine artery to transfect the vessel and produce a desired product. The marker chosen was green fluorescent protein (GFP) (Ke et al., 2011). In 4 farm pigs the cranial tibial artery was surgically exposed. The vessel was temporarily clamped proximally, and divided distally. A cannula was placed intraluminally, and the arterial segment was injected with 1×10E13 particles of AAV9.CB7.CI.GFP·WPRE.rBG. At 14days the transfected cranial tibial artery as well as the liver, spleen and kidneys were harvested. ELISA and reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) were used to analyze the artery for GFP production. Significant GFP expression was seen in all transfected cranial tibial vessels, as determined by both GFP protein production (ELISA) and mRNA (RT-qPCR). No GFP was identified in liver, spleen or kidney, nor in the no-GFP control animal artery. Adeno-associated virus 9 is an appropriate vector for gene therapy experiments in the porcine artery model. This vector, and the intraluminal deliver method described result in robust gene expression at 2weeks without evident systemic spill of the virus. The ability to limit delivery of the gene to an isolated segment of vessel is desirable for future research applications.
Collapse
|
6
|
Recent progresses in gene delivery-based bone tissue engineering. Biotechnol Adv 2013; 31:1695-706. [DOI: 10.1016/j.biotechadv.2013.08.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/24/2013] [Accepted: 08/19/2013] [Indexed: 12/18/2022]
|
8
|
Pagni G, Kaigler D, Rasperini G, Avila-Ortiz G, Bartel R, Giannobile W. Bone repair cells for craniofacial regeneration. Adv Drug Deliv Rev 2012; 64:1310-9. [PMID: 22433781 DOI: 10.1016/j.addr.2012.03.005] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 03/02/2012] [Accepted: 03/05/2012] [Indexed: 12/17/2022]
Abstract
Reconstruction of complex craniofacial deformities is a clinical challenge in situations of injury, congenital defects or disease. The use of cell-based therapies represents one of the most advanced methods for enhancing the regenerative response for craniofacial wound healing. Both somatic and stem cells have been adopted in the treatment of complex osseous defects and advances have been made in finding the most adequate scaffold for the delivery of cell therapies in human regenerative medicine. As an example of such approaches for clinical application for craniofacial regeneration, Ixmyelocel-T or bone repair cells are a source of bone marrow derived stem and progenitor cells. They are produced through the use of single pass perfusion bioreactors for CD90+ mesenchymal stem cells and CD14+ monocyte/macrophage progenitor cells. The application of ixmyelocel-T has shown potential in the regeneration of muscular, vascular, nervous and osseous tissue. The purpose of this manuscript is to highlight cell therapies used to repair bony and soft tissue defects in the oral and craniofacial complex. The field at this point remains at an early stage, however this review will provide insights into the progress being made using cell therapies for eventual development into clinical practice.
Collapse
|