1
|
Gauthier R, Jeannin C, Attik N, Trunfio-Sfarghiu AM, Gritsch K, Grosgogeat B. Tissue Engineering for Periodontal Ligament Regeneration: Biomechanical Specifications. J Biomech Eng 2021; 143:030801. [PMID: 33067629 DOI: 10.1115/1.4048810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Indexed: 11/08/2022]
Abstract
The periodontal biomechanical environment is very difficult to investigate. By the complex geometry and composition of the periodontal ligament (PDL), its mechanical behavior is very dependent on the type of loading (compressive versus tensile loading; static versus cyclic loading; uniaxial versus multiaxial) and the location around the root (cervical, middle, or apical). These different aspects of the PDL make it difficult to develop a functional biomaterial to treat periodontal attachment due to periodontal diseases. This review aims to describe the structural and biomechanical properties of the PDL. Particular importance is placed in the close interrelationship that exists between structure and biomechanics: the PDL structural organization is specific to its biomechanical environment, and its biomechanical properties are specific to its structural arrangement. This balance between structure and biomechanics can be explained by a mechanosensitive periodontal cellular activity. These specifications have to be considered in the further tissue engineering strategies for the development of an efficient biomaterial for periodontal tissues regeneration.
Collapse
Affiliation(s)
- R Gauthier
- Univ Lyon - Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Villeurbanne F-69622, France; Univ Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon 69008, France
| | - Christophe Jeannin
- Univ Lyon - Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Villeurbanne F-69622, France; Univ Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon 69008, France; Hospices Civils de Lyon, Service d'Odontologie, Lyon 69007, France
| | - N Attik
- Univ Lyon - Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Villeurbanne F-69622, France; Univ Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon 69008, France
| | | | - K Gritsch
- Univ Lyon - Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Villeurbanne F-69622, France; Univ Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon 69008, France; Hospices Civils de Lyon, Service d'Odontologie, Lyon 69007, France
| | - B Grosgogeat
- Univ Lyon - Claude Bernard Lyon 1, UMR CNRS 5615, Laboratoire des Multimatériaux et Interfaces, Villeurbanne F-69622, France; Univ Lyon, Université Claude Bernard Lyon 1, Faculté d'Odontologie, Lyon 69008, France; Hospices Civils de Lyon, Service d'Odontologie, Lyon 69007, France
| |
Collapse
|
2
|
Karamesinis K, Basdra EK. The biological basis of treating jaw discrepancies: An interplay of mechanical forces and skeletal configuration. Biochim Biophys Acta Mol Basis Dis 2018; 1864:1675-1683. [PMID: 29454076 DOI: 10.1016/j.bbadis.2018.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/06/2018] [Accepted: 02/12/2018] [Indexed: 10/18/2022]
Abstract
Jaw discrepancies and malrelations affect a large proportion of the general population and their treatment is of utmost significance for individuals' health and quality of life. The aim of their therapy is the modification of aberrant jaw development mainly by targeting the growth potential of the mandibular condyle through its cartilage, and the architectural shape of alveolar bone through a suture type of structure, the periodontal ligament. This targeted treatment is achieved via external mechanical force application by using a wide variety of intraoral and extraoral appliances. Condylar cartilage and sutures exhibit a remarkable plasticity due to the mechano-responsiveness of the chondrocytes and the multipotent mesenchymal cells of the sutures. The tissues respond biologically and adapt to mechanical force application by a variety of signaling pathways and a final interplay between the proliferative activity and the differentiation status of the cells involved. These targeted therapeutic functional alterations within temporo-mandibular joint ultimately result in the enhancement or restriction of mandibular growth, while within the periodontal ligament lead to bone remodeling and change of its architectural structure. Depending on the form of the malrelation presented, the above treatment approaches, in conjunction or separately, lead to the total correction of jaw discrepancies and the achievement of facial harmony and function. Overall, the treatment of craniofacial and jaw anomalies can be seen as an interplay of mechanical forces and adaptations occurring within temporo-mandibular joint and alveolar bone. The aim of the present review is to present up-to-date knowledge on the mechano-biology behind jaw growth modification and alveolar bone remodeling. Furthermore, future molecular targeted therapeutic strategies are discussed aiming at the improvement of mechanically-driven chondrogenesis and osteogenesis.
Collapse
Affiliation(s)
- Konstantinos Karamesinis
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efthimia K Basdra
- Department of Biological Chemistry, Cellular and Molecular Biomechanics Unit, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece.
| |
Collapse
|
3
|
Yang L, Yang Y, Wang S, Li Y, Zhao Z. In vitro mechanical loading models for periodontal ligament cells: From two-dimensional to three-dimensional models. Arch Oral Biol 2015; 60:416-24. [DOI: 10.1016/j.archoralbio.2014.11.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/19/2014] [Accepted: 11/20/2014] [Indexed: 02/08/2023]
|