1
|
Domanegg K, Sleeman JP, Schmaus A. CEMIP, a Promising Biomarker That Promotes the Progression and Metastasis of Colorectal and Other Types of Cancer. Cancers (Basel) 2022; 14:cancers14205093. [PMID: 36291875 PMCID: PMC9600181 DOI: 10.3390/cancers14205093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 10/05/2022] [Accepted: 10/12/2022] [Indexed: 12/04/2022] Open
Abstract
Simple Summary CEMIP (cell migration-inducing and hyaluronan-binding protein) has been implicated in the pathogenesis of numerous diseases, including colorectal and other forms of cancer. The molecular functions of CEMIP are currently under investigation and include the degradation of the extracellular matrix component hyaluronic acid (HA), as well as the regulation of a number of signaling pathways. In this review, we survey our current understanding of how CEMIP contributes to tumor growth and metastasis, focusing particularly on colorectal cancer, for which it serves as a promising biomarker. Abstract Originally discovered as a hypothetical protein with unknown function, CEMIP (cell migration-inducing and hyaluronan-binding protein) has been implicated in the pathogenesis of numerous diseases, including deafness, arthritis, atherosclerosis, idiopathic pulmonary fibrosis, and cancer. Although a comprehensive definition of its molecular functions is still in progress, major functions ascribed to CEMIP include the depolymerization of the extracellular matrix component hyaluronic acid (HA) and the regulation of a number of signaling pathways. CEMIP is a promising biomarker for colorectal cancer. Its expression is associated with poor prognosis for patients suffering from colorectal and other types of cancer and functionally contributes to tumor progression and metastasis. Here, we review our current understanding of how CEMIP is able to foster the process of tumor growth and metastasis, focusing particularly on colorectal cancer. Studies in cancer cells suggest that CEMIP exerts its pro-tumorigenic and pro-metastatic activities through stimulating migration and invasion, suppressing cell death and promoting survival, degrading HA, regulating pro-metastatic signaling pathways, inducing the epithelial–mesenchymal transition (EMT) program, and contributing to the metabolic reprogramming and pre-metastatic conditioning of future metastatic microenvironments. There is also increasing evidence indicating that CEMIP may be expressed in cells within the tumor microenvironment that promote tumorigenesis and metastasis formation, although this remains in an early stage of investigation. CEMIP expression and activity can be therapeutically targeted at a number of levels, and preliminary findings in animal models show encouraging results in terms of reduced tumor growth and metastasis, as well as combating therapy resistance. Taken together, CEMIP represents an exciting new player in the progression of colorectal and other types of cancer that holds promise as a therapeutic target and biomarker.
Collapse
Affiliation(s)
- Kevin Domanegg
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
| | - Jonathan P. Sleeman
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT) Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
- Correspondence:
| | - Anja Schmaus
- European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- Institute of Biological and Chemical Systems-Biological Information Processing, Karlsruhe Institute of Technology (KIT) Campus Nord, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
2
|
Cheng J, Zhang Y, Wan R, Zhou J, Wu X, Fan Q, He J, Tan W, Deng Y. CEMIP Promotes Osteosarcoma Progression and Metastasis Through Activating Notch Signaling Pathway. Front Oncol 2022; 12:919108. [PMID: 35957875 PMCID: PMC9361750 DOI: 10.3389/fonc.2022.919108] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 06/22/2022] [Indexed: 12/17/2022] Open
Abstract
Cell migration inducing protein (CEMIP) has been linked to carcinogenesis in several types of cancers. However, the role and mechanism of CEMIP in osteosarcoma remain unclear. This study investigated the role of CEMIP in the progression and metastasis of osteosarcoma, CEMIP was found to be overexpressed in osteosarcoma tissues when compared to adjacent non-tumor tissues, and its expression was positively associated with a poor prognosis in osteosarcoma patients. Silencing CEMIP decreased osteosarcoma cells proliferation, migration, and invasion, but enhanced apoptosis in vitro, and suppressed tumor growth and metastasis in vivo. Mechanistically, CEMIP promoted osteosarcoma cells growth and metastasis through activating Notch signaling pathway, silencing CEMIP would reduce the protein expression and activation of Notch/Jagged1/Hes1 signaling pathway in vitro and in vivo, activation of Notch signaling pathway could partially reversed cell proliferation and migration in shCEMIP osteosarcoma cells. In conclusion, our study demonstrated that CEMIP plays a substantial role in the progression of osteosarcoma via Notch signaling pathway, providing a promising therapeutic target in osteosarcoma.
Collapse
Affiliation(s)
- Jun Cheng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Yan Zhang
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, China
| | - Rongjun Wan
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, China
| | - Jun Zhou
- Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, China
| | - Xin Wu
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qizhi Fan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Jingpeng He
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Wei Tan
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
| | - Youwen Deng
- Department of Spine Surgery, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Youwen Deng,
| |
Collapse
|
3
|
Pillai J, Chincholkar T, Dixit R, Pandey M. A systematic review of proteomic biomarkers in oral squamous cell cancer. World J Surg Oncol 2021; 19:315. [PMID: 34711249 PMCID: PMC8555221 DOI: 10.1186/s12957-021-02423-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/06/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Head and neck squamous cell cancer (HNSCC) is the most common cancer associated with chewing tobacco, in the world. As this is divided in to sites and subsites, it does not make it to top 10 cancers. The most common subsite is the oral cancer. At the time of diagnosis, more than 50% of patients with oral squamous cell cancers (OSCC) had advanced disease, indicating the lack of availability of early detection and risk assessment biomarkers. The new protein biomarker development and discovery will aid in early diagnosis and treatment which lead to targeted treatment and ultimately a good prognosis. METHODS This systematic review was performed as per PRISMA guidelines. All relevant studies assessing characteristics of oral cancer and proteomics were considered for analysis. Only human studies published in English were included, and abstracts, incomplete articles, and cell line or animal studies were excluded. RESULTS A total of 308 articles were found, of which 112 were found to be relevant after exclusion. The present review focuses on techniques of cancer proteomics and discovery of biomarkers using these techniques. The signature of protein expression may be used to predict drug response and clinical course of disease and could be used to individualize therapy with such knowledge. CONCLUSIONS Prospective use of these markers in the clinical setting will enable early detection, prediction of response to treatment, improvement in treatment selection, and early detection of tumor recurrence for disease monitoring. However, most of these markers for OSCC are yet to be validated.
Collapse
Affiliation(s)
| | | | - Ruhi Dixit
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India
| | - Manoj Pandey
- Department of Surgical Oncology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221 005, India.
| |
Collapse
|
4
|
Prognostic association of starvation-induced gene expression in head and neck cancer. Sci Rep 2021; 11:19130. [PMID: 34580365 PMCID: PMC8476550 DOI: 10.1038/s41598-021-98544-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023] Open
Abstract
Autophagy-related genes (ARGs) have been implicated in the initiation and progression of malignant tumor promotion. To investigate the dynamics of expression of genes, including ARGs, head and neck squamous cell carcinoma (HNSCC) cells were placed under serum-free conditions to induce growth retardation and autophagy, and these starved cells were subjected to transcriptome analysis. Among the 21 starvation-induced genes (SIGs) located in the autophagy, cell proliferation, and survival signaling pathways, we identified SIGs that showed prominent up-regulation or down-regulation in vitro. These included AGR2, BST2, CALR, CD22, DDIT3, FOXA2, HSPA5, PIWIL4, PYCR1, SGK3, and TRIB3. The Cancer Genome Atlas (TCGA) database of HNSCC patients was used to examine the expression of up-regulated genes, and CALR, HSPA5, and TRIB3 were found to be highly expressed relative to solid normal tissue in cancer and the survival rate was reduced in patients with high expression. Protein-protein interaction analysis demonstrated the formation of a dense network of these genes. Cox regression analysis revealed that high expression of CALR, HSPA5, and TRIB3 was associated with poor prognosis in patients with TCGA-HNSCC. Therefore, these SIGs up-regulated under serum starvation may be molecular prognostic markers in HNSCC patients.
Collapse
|
5
|
Ito K, Nishida Y, Ikuta K, Urakawa H, Koike H, Sakai T, Zhang J, Shimoyama Y, Imagama S. Overexpression of KIAA1199, a novel strong hyaluronidase, is a poor prognostic factor in patients with osteosarcoma. J Orthop Surg Res 2021; 16:439. [PMID: 34233709 PMCID: PMC8262042 DOI: 10.1186/s13018-021-02590-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/28/2021] [Indexed: 01/02/2023] Open
Abstract
Background Hyaluronan (HA) has been shown to play important roles in the growth, invasion, and metastasis of malignant tumors. KIAA1199, which has potent HA-degrading activity, has been reported to be expressed in various malignancies and associated with patient prognosis. However, there are no reports on the expression of KIAA1199 in osteosarcoma. The aim of this study was to investigate the impact of KIAA1199 and HA expression in osteosarcoma tissues on the prognosis and other clinical characteristics of osteosarcoma patients. Methods From 2003 to 2013, we included 49 patients with osteosarcoma at our institution, whose FFPE (formalin fixed paraffin embedded) tissue was available at the time of biopsy. The expressions of KIAA1199 and HA in each sample were assessed by immunohistochemistry using the primary antibody for KIAA1199 and HA-binding protein (HABP), respectively. For evaluation of the positivity of KIAA1199 staining, we divided the samples into two groups: High group with more than 75% positive staining and Low group with less than 75% positive staining. In the HABP staining, those with more than and less than 60% were assigned to a High group, and Low group respectively. Various clinical features were correlated with staining positivity. Prognostic factors including positivity of the staining were analyzed. Levels of mRNA expression for enzymes related to HA metabolism were assessed in two osteosarcoma cell lines using real-time RT-PCR. Results In KIAA1199 staining, high positivity was significantly correlated with occurrence of distant metastases (P = 0.002). The necrosis rate after preoperative chemotherapy was significantly lower in the High positivity group (59%), compared to that in the Low group (84.8%) (P = 0.003). HABP positivity was not correlated with any demographic variables, although the Low positivity group had a significantly better overall survival than the High group with KIAA1199 and HABP staining (P = 0.026 and P = 0.029, respectively). In multivariable analysis, KIAA1199 (P = 0.036) and HABP staining (P = 0.002), location (P = 0.001), and distant metastasis at initial diagnosis (P < 0.001) were identified as significant prognostic factors. KIAA1199 and hyaluronan synthase mRNA were expressed at different levels in the two osteosarcoma cell lines. Conclusions Our results showed that high expression of KIAA1199 and HA are both poor prognostic factors in osteosarcoma. KIAA1199 may be a useful marker for distant metastasis and chemoresistance.
Collapse
Affiliation(s)
- Kan Ito
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Yoshihiro Nishida
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan. .,Department of Rehabilitation, Nagoya University Hospital, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan.
| | - Kunihiro Ikuta
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Hiroshi Urakawa
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Hiroshi Koike
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Tomohisa Sakai
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Jiarui Zhang
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Yoshie Shimoyama
- Department of Pathology and Laboratory Medicine, Nagoya University Hospital, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| | - Shiro Imagama
- Department of Orthopedic Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai, Showa, Nagoya, Aichi, 466-8550, Japan
| |
Collapse
|
6
|
Qi M, Li L, Tang X, Lu Y, Wang M, Yang J, Zhang M. Nicotine promotes the development of oral leukoplakia via regulating peroxiredoxin 1 and its binding proteins. ACTA ACUST UNITED AC 2021; 54:e10931. [PMID: 34076143 PMCID: PMC8186375 DOI: 10.1590/1414-431x2020e10931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 02/09/2021] [Indexed: 12/24/2022]
Abstract
Tobacco can induce reactive oxygen species (ROS) production extensively in cells, which is a major risk factor for oral leukoplakia (OLK) development. Peroxiredoxin 1 (Prx1) is a key antioxidant protein, upregulated in a variety of malignant tumors. We previously found that nicotine, the main ingredient of tobacco, promotes oral carcinogenesis via regulating Prx1. The aim of the present study was to screen and identify the Prx1 interacting proteins and investigate the mechanisms of nicotine on the development of OLK. Through liquid chromatography-tandem mass spectrometry combined with bioinformatics analysis, the candidate Prx1 interacting proteins of cofilin-1 (CFL1), tropomyosin alpha-3 chain (TPM3), and serine/threonine-protein phosphatase 2A 65 kDa regulatory subunit A alpha isoform (PPP2R1A) were screened in human dysplastic oral keratinocyte cells treated with nicotine. CFL1, TPM3, and PPP2R1A were highly expressed in human OLK tissues. The expression of CFL1 increased and the expression of PPP2R1A decreased in OLK of smokers compared to that in OLK of non-smokers. Nicotine upregulated CFL1 and downregulated PPP2R1A in 4-nitro-quinoline-1-oxide (4NQO)-induced OLK tissues in mice in part dependent on Prx1. Furthermore, the in-situ interaction of CFL1, TPM3, and PPP2R1A with Prx1 were validated in human OLK tissues. Our results suggested that tobacco might promote the development of OLK via regulating Prx1 and its interacting proteins CFL1 and PPP2R1A.
Collapse
Affiliation(s)
- Moci Qi
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Dongcheng District, Beijing, China.,Department of Clinical Laboratory Medicine, Beijing Shijitan Hospital, Capital Medical University, Haidian District, Beijing, China
| | - Lingyu Li
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Dongcheng District, Beijing, China
| | - Xiaofei Tang
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Dongcheng District, Beijing, China
| | - Yunping Lu
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Dongcheng District, Beijing, China
| | - Min Wang
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Dongcheng District, Beijing, China
| | - Jing Yang
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Dongcheng District, Beijing, China
| | - Min Zhang
- Beijing Institute of Dental Research, Beijing Key Laboratory, Beijing Stomatological Hospital and School of Stomatology, Capital Medical University, Dongcheng District, Beijing, China
| |
Collapse
|
7
|
Cai M, Tan R, Huang Y, Chen X, Kong Q, Guo K, Xu M. High Expression of Tomm34 and Its Correlations With Clinicopathology in Oral Squamous Cell Carcinoma. Pathol Oncol Res 2021; 27:641042. [PMID: 34257607 PMCID: PMC8262227 DOI: 10.3389/pore.2021.641042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/02/2021] [Indexed: 11/23/2022]
Abstract
Tomm34, as a member of the outer mitochondrial membrane proteins, is evenly distributed between the cytoplasm and the outer mitochondrial membrane. It is up-regulated in a variety of tumors and correlates with poor prognosis. This study aimed to investigate expression of Tomm34 and its correlations with clinicopathology in oral squamous cell carcinoma (OSCC). Oncomine database and UALCAN database were utilized to predict the expression and prognosis values of Tomm34 in head and neck squamous cell carcinoma (HNSCC). By immunohistochemistry, a retrospective study was performed to verify the bioinformatics results to evaluate the Tomm34 expression and clinicopathological variables in both HPV-positive OSCC and HPV-negative OSCC. Immunohistochemistry of our cohort revealed that 48 cases fulfilled the Tomm34 high expression judgment criteria, and the overall positive rate was 60% (48/80), and 27 cases fulfilled the p16 expression judgment criteria (33.75%, 27/80). The high expression of Tomm34 was closely related with the TNM classification of OSCC (p < 0.01) and tumor size (p < 0.01) both in HPV-negative OSCC and HPV-positive OSCC, while related with lymph node metastasis (p = 0.001) in HPV-negative OSCC and drinking history (p = 0.044) in HPV-positive OSCC. In addition, the Kaplan-Meier curves indicated that higher level of Tomm34 was correlated with poorer overall survival (OS) and disease-free survival (DFS) in HPV-negative OSCC (OS, p = 0.046; DFS, p = 0.020) but not in HPV-positive OSCC (OS, p = 0.824; DFS, p = 0.782). In conclusion, Tomm34 is highly expressed in OSCC and may be a useful factor to provide prognostic information, especially in HPV-negative OSCC group.
Collapse
Affiliation(s)
- Min Cai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Rukeng Tan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yunyi Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xuanyi Chen
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Qingci Kong
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Kaixin Guo
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Meng Xu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
8
|
Zhai X, Wang W, Ma Y, Zeng Y, Dou D, Fan H, Song J, Yu X, Xin D, Du G, Jiang Z, Zhang H, Zhang X, Jin B. Serum KIAA1199 is an advanced-stage prognostic biomarker and metastatic oncogene in cholangiocarcinoma. Aging (Albany NY) 2020; 12:23761-23777. [PMID: 33197891 PMCID: PMC7762501 DOI: 10.18632/aging.103964] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 07/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cell proliferation and migration are the determinants of malignant tumor progression, and a better understanding of related genes will lead to the identification of new targets aimed at preventing the spread of cancer. Some studies have shown that KIAA1199 (CEMIP) is a transmembrane protein expressed in many types of noncancerous cells and cancer cells. However, the potential role of KIAA1199 in the progression of cholangiocarcinoma (CCA) remains unclear. RESULTS Analysis of cancer-related databases showed that KIAA1199 is overexpressed in CCA. ELISA, immunohistochemistry, Western blotting and qPCR indicated high expression levels of KIAA1199 in serum, CCA tissues and CCA cell lines. In the serum (n = 41) and large sample validation (n = 177) cohorts, higher KIAA1199 expression was associated with shorter overall survival and disease-free survival times. At the cellular level, KIAA1199 overexpression (OE) promoted CCA growth and metastasis. Subcutaneous tumor xenograft experiments showed that KIAA1199 enhances CCA cell proliferation. Additionally, the expression levels of components in the EMT-related TGF-β pathway changed significantly after KIAA1199 upregulation and silencing. CONCLUSION KIAA1199 is a promising new diagnostic molecule and therapeutic target in CCA. The serum KIAA1199 level can be used as a promising clinical tool for predicting the overall postoperative outcomes of patients with CCA. METHODS CCA-related KIAA1199 data were downloaded from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases. To assess the prognostic impact of KIAA1199, an enzyme-linked immunosorbent assay (ELISA) was used to measure the serum level of KIAA1199 in 41 patients who underwent surgical resection. Immunohistochemical staining, Western blotting and qPCR were used to verify and retrospectively review the expression levels of KIAA1199 in cancer tissue specimens from 177 CCA patients. The effect of KIAA1199 on CCA was evaluated by cell-based functional assays and subcutaneous tumor xenograft experiments. The expression levels of proteins associated with epithelial-mesenchymal transition (EMT) and activation of relevant signaling pathways were measured via Western blotting.
Collapse
Affiliation(s)
- Xiangyu Zhai
- Department of Surgery, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| | - Wei Wang
- Department of Surgery, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yunlong Ma
- Department of Surgery, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yijia Zeng
- Radiology Department, Qilu Hospital of Shandong University, Jinan, China
| | - Dandan Dou
- School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Haoning Fan
- College of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jianping Song
- Department of Surgery, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xin Yu
- School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Danqing Xin
- School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Gang Du
- Department of Surgery, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhengchen Jiang
- Department of Surgery, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Hao Zhang
- Department of Surgery, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
| | | | - Bin Jin
- Department of Surgery, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of General Surgery, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
9
|
Huang M, Liao F, Song Y, Zuo G, Tan G, Chu L, Wang T. Overexpression of KIAA1199 is an independent prognostic marker in laryngeal squamous cell carcinoma. PeerJ 2020; 8:e9637. [PMID: 33194340 PMCID: PMC7482636 DOI: 10.7717/peerj.9637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 07/09/2020] [Indexed: 01/10/2023] Open
Abstract
Background KIAA1199 is a recently identified novel gene that is upregulated in various human cancers with poor survival, but its role and the underlying mechanisms in laryngeal squamous cell carcinoma (LSCC) remain unknown. Here, we collected tissues from 105 cases of LSCC to investigate the relationships between KIAA1199 protein expression and clinical factors. Methods Western blotting and real-time quantitative PCR (RT-PCR) were used for detect the protein and mRNA expression of KIAA1199 in LSCC tissue. Immunohistochemistry (IHC) staining was used to detect the expression of KIAA1199. Patient clinical information, for instance sex, age, pathological differentiation, clinical region, T stage, N stage, clinical stage, operation type, neck lymph dissection, smoking status, and drinking status were recorded. Kaplan–Meier survival analysis and Cox analysis were applied to identify the relationship between KIAA1199 and LSCC. Results Western blotting results showed KIAA1199 protein was significantly higher in tumor tissues vs. adjacent non-cancerous tissues (0.9385 ± 0.1363 vs. 1.838 ± 0.3209, P = 0.04). The KIAA1199 mRNA expression was considerably higher in tumor tissues (P < 0.001) than in adjacent non-cancerous tissues by RT-PCR. IHC results showed up-regulated KIAA1199 expression was related with some severe clinicopathological parameters: pathologic differentiation (P = 0.002), T stage (P < 0.001), N stage (P < 0.001), clinical stage (P < 0.001), survival time (P = 0.008) and survival status (P < 0.001). Kaplan–Meier survival analysis showed that patients with high KIAA1199 protein expression had poor overall survival (OS) (P < 0.05). Cox analysis suggested that the KIAA1199 protein expression constituted an independent prognostic marker for LSCC patients (P < 0.001). Conclusion Our findings revealed that KIAA1199 protein expression may be used to predict LSCC patient outcome.
Collapse
Affiliation(s)
- Meixiang Huang
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Feifei Liao
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, Chian
| | - Yexun Song
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Gang Zuo
- Ministry of Education (Central South University), Key Laboratory of Metallogenic Prediction of Nonferrous Metals and Geological Environment Monitoring, Changsha, Hunan, China
| | - Guolin Tan
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ling Chu
- Department of Pathology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, Chian
| | - Tiansheng Wang
- Department of Otolaryngology Head and Neck Surgery, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
10
|
Nan C, Zheng Y, Fan H, Sun H, Huang S, Li N. Antitumorigenic Effect of Hsp90 Inhibitor SNX-2112 on Tongue Squamous Cell Carcinoma is Enhanced by Low-Intensity Ultrasound. Onco Targets Ther 2020; 13:7907-7919. [PMID: 32884285 PMCID: PMC7434630 DOI: 10.2147/ott.s262174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/24/2020] [Indexed: 01/09/2023] Open
Abstract
Purpose The novel Hsp90 inhibitor SNX-2112 showed broad antitumor activity. However, it was still necessary to optimize the therapeutic dosage of SNX-2112 applied on tumors to obtain effective therapy with minimal dose to reduce toxicity. We investigated the role of low-intensity US in promoting antitumorigenic effect of low doses of SNX-2112 on tongue squamous cell carcinoma. Methods Cell viability was measured using CCK-8 assay or staining with Calcein AM/PI. Relative cumulative levels of SNX-2112 in cells were detected using high-performance liquid chromatography. The production of ROS was analyzed using fluorescence microscope and flow cytometer. Cellular apoptosis was detected using flow cytometer. The expression levels of proteins of the ERS-associated apoptosis signaling pathway were detected using Western blotting analysis. The efficacy and biosafety of SNX-2112 were also investigated in a mouse xenograft model. Results Low-intensity US combined with SNX-2112 exhibited significant antitumor effect, increased the absorption of SNX-2112 by cells even with a low dose, enhanced ROS generation and apoptosis. The combination regimen also inhibited the protein expression of Hsp90 and triggered apoptosis through endoplasmic reticulum stress (ERS) by enhancing PERK, CHOP and Bax protein levels, while downregulating the level of Bcl-2. Additionally, N-acetyl-L-cysteine (NAC), ROS scavenger, was able to reverse these results. Low-intensity US combined with SNX-2112 significantly inhibited tumor growth, prolonged survival of mice, decreased proliferation and promoted apoptosis with no visible damage or abnormalities in major organs in the mouse xenograft model with tongue squamous cell carcinoma. Conclusion The antitumor effects of SNX-2112 were enhanced by low-intensity US. The most probable mechanism was that US sonoporation induced more SNX-2112 delivery to the cells and enhanced ROS production, triggering the ERS-associated apoptosis signaling pathway. Therefore, low-intensity US may increase the efficiency of conventional chemotherapy and reduce the dosage of SNX-2112 required and its side effects.
Collapse
Affiliation(s)
- Chuanchuan Nan
- Department of Intensive Care Unit, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, Guangdong, People's Republic of China
| | - Yuyan Zheng
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, People's Republic of China
| | - Haidong Fan
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, People's Republic of China
| | - Haipeng Sun
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, People's Republic of China
| | - Shengxing Huang
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, People's Republic of China
| | - Nan Li
- Department of Stomatology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, 518020, People's Republic of China
| |
Collapse
|
11
|
Xue Q, Wang X, Deng X, Huang Y, Tian W. CEMIP regulates the proliferation and migration of vascular smooth muscle cells in atherosclerosis through the WNT–beta-catenin signaling pathway. Biochem Cell Biol 2020; 98:249-257. [PMID: 32207314 DOI: 10.1139/bcb-2019-0249] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
In this study we investigated the regulatory role of cell-migration-inducing and hyaluronan-binding protein (CEMIP) in the proliferation and migration of vascular smooth muscle cells (VSMCs). The mRNA and protein levels of CEMIP were upregulated in the plasma samples from patients with atherosclerosis, and in VSMCs stimulated with platelet-derived growth factor-BB (PDGF-BB), compared with plasma from healthy subjects and untreated VSMCs. Silencing CEMIP suppressed PDGF-BB-induced cell migration and proliferation in VSMCs, as determined using a Cell Counting Kit-8 assays, 5-ethynyl-2′-deocyuridine (EDU) assays, flow cytometry, wound healing assays, and Transwell assays. Overexpression of CEMIP promoted the proliferation and migration of VSMCs via activation of the Wnt–β-catenin signaling pathway and the upregulation of its target genes, including matrix metalloproteinase-2, matrix metalloproteinase-7, cyclin D1, and c-myc, whereas CEMIP deficiency showed the opposite effects. The knockdown of CEMIP in ApoE−/− mice by intravenous injection of lentiviral vector expressing si-CEMIP protected against high-fat-diet-induced atherosclerosis, as shown by the reduced aortic lesion areas, aortic sinus lesion areas, and the concentration of blood lipids compared with mice normally expressing CEMIP. These results demonstrated that CEMIP regulates the proliferation and migration of VSMCs in atherosclerosis by activating the WNT–β-catenin signaling pathway, which suggests the therapeutic potential of CEMIP for the management of atherosclerosis.
Collapse
Affiliation(s)
- Qiang Xue
- Department of Geriatrics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Xiaoli Wang
- Department of Pharmacy, Liaocheng People’s Hospital, Liaocheng, Shandong Province 252000, China
| | - Xiaohui Deng
- Department of Geriatrics, Beijing Jishuitan Hospital, Beijing 100035, China
| | - Yue Huang
- International Exchang Center, China Association for Pharmaceuticals and Medical Devices Technology Exchange, Beijing 100036, China
| | - Wei Tian
- Department of Geriatrics, Beijing Jishuitan Hospital, Beijing 100035, China
| |
Collapse
|
12
|
Khosla R, Hemati H, Rastogi A, Ramakrishna G, Sarin SK, Trehanpati N. miR-26b-5p helps in EpCAM+cancer stem cells maintenance via HSC71/HSPA8 and augments malignant features in HCC. Liver Int 2019; 39:1692-1703. [PMID: 31276277 DOI: 10.1111/liv.14188] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Targeting cancer stem cells (CSCs) in hepatocellular carcinoma (HCC) is difficult because of their similarities with normal stem cells (NSCs). EpCAM can identify CSCs from EpCAM+AFP+HCC cases, but is also expressed on NSCs. We aimed to distinguish the two using integrated protein, mRNA and miRNA profiling. METHODS iTRAQ based protein profiling and Next Generation Sequencing (NGS) was performed on EpCAM+/EpCAM- cells isolated from HCC (Ep+CSC, Ep- HCC) and EpCAM+ cells from non-cancerous/non-cirrhotic control liver tissues (Ep+NSC). Validations were done using qRT-PCR, flowcytometry and western blotting followed by in vitro and in vivo functional studies. RESULTS 11 proteins were overexpressed (>3 fold) in Ep+CSCs compared to Ep- HCC and Ep+NSC cells. However, RNA-sequencing confirmed the Ep+CSC specific up-regulation of only HSPA8, HNRNPC, MPST and GAPDH mRNAs among these. Database search combined with miRNA profiling revealed Ep+ CSC specific down-regulation of 29 miRNAs targeting these four genes. Of these, only miR-26b-5p was found to target both HSPA8 and EpCAM. Validation of HSPA8 overexpression and miR-26b-5p down-regulation followed by linear regression analysis established a negative correlation between the two. Functional studies demonstrated that reduced miR-26b-5p expression increased the spheroid formation, migration, invasion and tumourigenicity of Ep+ CSCs. Furthermore, anti-miR-26b-5p increased the number of Ep+ CSCs with a concomitant overexpression of stemness genes and reduction of proapoptotic protein BBC3, which is a known substrate of HSPA8. CONCLUSION miR-26b-5p imparts metastatic properties and helps in maintenance of Ep+ CSCs via HSPA8. Thus, miR-26b-5p and HSPA8 could serve as molecular targets for selectively eliminating the Ep+ CSC population in human HCCs.
Collapse
Affiliation(s)
- Ritu Khosla
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Hamed Hemati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India.,Department of Biotechnology, Punjab University, Chandigarh, India
| | | | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| | - Shiv K Sarin
- Department of Hepatology, ILBS, New Delhi, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences (ILBS), New Delhi, India
| |
Collapse
|
13
|
Malik UU, Siddiqui IA, Ilyas A, Hashim Z, Staunton L, Kwasnik A, Pennington SR, Zarina S. Identification of Differentially Expressed Proteins from Smokeless Tobacco Addicted Patients Suffering from Oral Squamous Cell Carcinoma. Pathol Oncol Res 2019; 26:1489-1497. [PMID: 31446608 DOI: 10.1007/s12253-019-00724-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is the eight most common malignancy worldwide with an incidence rate of 40% in south-east Asia. Lack of effective diagnostic tools at early stage and disease recurrence despite extensive treatments are main reasons for high mortality and low survival rates. The aim of current study was to identify differentially expressed proteins to explore potential candidate biomarkers having diagnostic significance. We performed comparative proteomic analysis of paired protein samples (cancerous buccal mucosa and adjacent normal tissue) from OSCC patients using a combination of two dimensional gel electrophoresis and Mass spectrometric analysis. On the basis of spot intensity, seventeen proteins were found to be consistently differentially expressed among most of the samples which were identified through mass spectrometry. For validation of identified proteins, expression level of stratifin was determined using immuno-histochemistry and Western blot analysis. All identified proteins were analyzed by STRING to explore their interaction. Among uniquely identified proteins in this study, at least two candidate markers (Ig Kappa chain C region and Isoform 2 of fructose bisphosphate aldolase A) were found to be novel with respect to OSCC which can be explored further. Results presented in current study are likely to contribute in understanding the involvement of these molecules in carcinogenesis apart from their plausible role as diagnostic/prognostic markers.
Collapse
Affiliation(s)
- Uzma Urooj Malik
- National Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | | | - Amber Ilyas
- National Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Zehra Hashim
- National Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan
| | - Lisa Staunton
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Anna Kwasnik
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Stephen R Pennington
- School of Medicine and Medical Science, UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Shamshad Zarina
- National Center for Proteomics, University of Karachi, Karachi, 75270, Pakistan.
| |
Collapse
|
14
|
Tammi MI, Oikari S, Pasonen-Seppänen S, Rilla K, Auvinen P, Tammi RH. Activated hyaluronan metabolism in the tumor matrix — Causes and consequences. Matrix Biol 2019; 78-79:147-164. [PMID: 29709595 DOI: 10.1016/j.matbio.2018.04.012] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 03/13/2018] [Accepted: 04/25/2018] [Indexed: 02/08/2023]
|
15
|
Jiang Z, Zhai X, Shi B, Luo D, Jin B. KIAA1199 overexpression is associated with abnormal expression of EMT markers and is a novel independent prognostic biomarker for hepatocellular carcinoma. Onco Targets Ther 2018; 11:8341-8348. [PMID: 30538502 PMCID: PMC6260188 DOI: 10.2147/ott.s187389] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Purpose To determined KIAA1199 expression and investigate its correlation with the clinicopathologic data and prognosis of hepatocellular carcinoma (HCC), as well as markers of epithelial-mesenchymal transition (EMT); N-cadherin, E-cadherin and vimentin. Materials and methods Western blot, quantitative real-time PCR, and immunohistochemical staining were used to measure KIAA1199 expression in human HCC specimens. Subsequently, the correlation between KIAA1199 expression and the pathological characteristics of HCC patients was analyzed. Univariate and multivariate analyses were used to explore the risk factors associated with disease-free survival (DFS) and overall survival (OS). Results KIAA1199 expression was remarkably increased in hepatocellular carcinoma tissues compared to paracarcinomatous tissues. This phenomenon was accompanied by aberrant expression of EMT-associated markers. In addition, high KIAA1199 expression was associated with severe pathological symptoms, low DFS, and low OS. Results of the multivariate analysis showed that KIAA1199 expression may be an independent predictor of low disease-free survival and OS of HCC patients. Conclusion KIAA1199 overexpression in HCC patients is associated with aberrant expression of EMT-associated markers and severe clinicopathological symptoms, and thus may function as a marker of poor prognosis in HCC.
Collapse
Affiliation(s)
- Zhengchen Jiang
- Department of General Surgery, Qilu Hospital of Shandong University, Jinnan, China,
| | - Xiangyu Zhai
- Department of General Surgery, Qilu Hospital of Shandong University, Jinnan, China,
| | - Binyao Shi
- Department of General Surgery, Qilu Hospital of Shandong University, Jinnan, China,
| | - Dan Luo
- School of Basic Medical Science, Shandong University, Jinnan, China
| | - Bin Jin
- Department of General Surgery, Qilu Hospital of Shandong University, Jinnan, China,
| |
Collapse
|
16
|
Dickinson A, Saraswat M, Mäkitie A, Silén R, Hagström J, Haglund C, Joenväärä S, Silén S. Label-free tissue proteomics can classify oral squamous cell carcinoma from healthy tissue in a stage-specific manner. Oral Oncol 2018; 86:206-215. [PMID: 30409303 DOI: 10.1016/j.oraloncology.2018.09.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/21/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES No prognostic or predictive biomarkers for oral squamous cell carcinoma (OSCC) exist. We aimed to discover novel proteins, altered in OSCC, to be further investigated as potential biomarkers, and to improve understanding about pathways involved in OSCC. MATERIALS AND METHODS Proteomic signatures of seven paired healthy and OSCC tissue samples were identified using ultra-definition quantitative mass spectrometry, then analysed and compared using Anova, principal component analysis, hierarchical clustering and OPLS-DA modelling. A selection of significant proteins that were also altered in the serum from a previous study (PMID: 28632724) were validated immunohistochemically on an independent cohort (n = 66) to confirm immunopositivity and location within tumour tissue. Ingenuity Pathways Analysis was employed to identify altered pathways. RESULTS Of 829 proteins quantified, 257 were significant and 72 were able to classify healthy vs OSCC using OPLS-DA modelling. We identified 19 proteins not previously known to be upregulated in OSCC, including prosaposin and alpha-taxilin. KIAA1217 and NDRG1 were upregulated in stage IVa compared with stage I tumours. Altered pathways included calcium signalling, cellular movement, haematological system development and function, and immune cell trafficking, and involved NF-kB and MAPK networks. CONCLUSIONS We found a set of proteins reliably separating OSCC tumour from healthy tissue, and multiple proteins differing between stage I and stage IVa OSCC. These potential biomarkers can be studied and validated in larger cohorts.
Collapse
Affiliation(s)
- Amy Dickinson
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Haartmaninkatu 3, PO Box 21, 00014, Finland; Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Mayank Saraswat
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Haartmaninkatu 3, PO Box 21, 00014, Finland; HUSLAB, Helsinki University Hospital, Helsinki 00290, Finland.
| | - Antti Mäkitie
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Division of Ear, Nose and Throat Diseases, Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
| | - Robert Silén
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Haartmaninkatu 3, PO Box 21, 00014, Finland.
| | - Jaana Hagström
- HUSLAB, Helsinki University Hospital, Helsinki 00290, Finland; Department of Pathology, University of Helsinki, Finland.
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki, University Hospital, Helsinki, Finland; Research Programs Unit, Translational Cancer Biology, University of Helsinki, Helsinki, Finland.
| | - Sakari Joenväärä
- Transplantation Laboratory, Haartman Institute, University of Helsinki, Haartmaninkatu 3, PO Box 21, 00014, Finland; HUSLAB, Helsinki University Hospital, Helsinki 00290, Finland.
| | - Suvi Silén
- Department of Otorhinolaryngology - Head and Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
17
|
Khowal S, Naqvi SH, Monga S, Jain SK, Wajid S. Assessment of cellular and serum proteome from tongue squamous cell carcinoma patient lacking addictive proclivities for tobacco, betel nut, and alcohol: Case study. J Cell Biochem 2018; 119:5186-5221. [PMID: 29236289 DOI: 10.1002/jcb.26554] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 11/30/2017] [Indexed: 02/06/2023]
Abstract
The intriguing molecular pathways involved in oral carcinogenesis are still ambiguous. The oral squamous cell carcinoma (OSCC) ranks as the most common type constituting more than 90% of the globally diagnosed oral cancers cases. The elevation in the OSCC incidence rate during past 10 years has an alarming impression on human healthcare. The major challenges associated with OSCC include delayed diagnosis, high metastatic rates, and low 5-year survival rates. The present work foundations on reverse genetic strategy and involves the identification of genes showing expressional variability in an OSCC case lacking addictive proclivities for tobacco, betel nut, and/or alcohol, major etiologies. The expression modulations in the identified genes were analyzed in 16 patients comprising oral pre-cancer and cancer histo-pathologies. The genes SCCA1 and KRT1 were found to down regulate while DNAJC13, GIPC2, MRPL17, IG-Vreg, SSFA2, and UPF0415 upregulated in the oral pre-cancer and cancer pathologies, implicating the genes as crucial players in oral carcinogenesis.
Collapse
Affiliation(s)
- Sapna Khowal
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Samar H Naqvi
- Molecular Diagnostics, Genetix Biotech Asia (P) Ltd., New Delhi, India
| | - Seema Monga
- Department of ENT, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Swatantra K Jain
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
- Department of Biochemistry, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| | - Saima Wajid
- Department of Biotechnology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| |
Collapse
|
18
|
Smith RW, Moccia RD, Seymour CB, Mothersill CE. Irradiation of rainbow trout at early life stages results in a proteomic legacy in adult gills. Part A; proteomic responses in the irradiated fish and in non-irradiated bystander fish. ENVIRONMENTAL RESEARCH 2018; 163:297-306. [PMID: 29463416 DOI: 10.1016/j.envres.2017.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/19/2017] [Accepted: 12/24/2017] [Indexed: 06/08/2023]
Abstract
Exposure to a single 0.5 Gy X-ray dose of eggs at 48 h after fertilisation (48 h egg), eyed eggs, yolk sac larvae (YSL) and first feeders induces a legacy effect in adult rainbow trout. This includes the transmission of a bystander effect to non-irradiated adult trout which had swam with the irradiated fish. The aim of this study was to investigate this legacy by analysing the gill proteome of these irradiated and bystander fish. Irradiation at all of the early life stages resulted in changes to proteins which play a key role in development but are also known to be anti-tumorigenic and anti-oxidant: upregulation of haemoglobin subunit beta (48 h egg), haemoglobin, serum albumin 1 precursor (eyed eggs), clathrin heavy chain 1 isoform X10 (eyed eggs and first feeders), and actin-related protein 2/3 complex subunit 4 (first feeders), downregulation of pyruvate dehydrogenase, histone 1 (48 h egg), triosephosphate isomerase (TPI), collagen alpha-1(1) chain like proteins (YSL), pyruvate kinase PKM-like protein (YSL and first feeders), ubiquitin-40S ribosomal proteins S27 and eukaryotic translation initiation factor 4 A isoform 1B (first feeders). However irradiation of YSL and first feeders (post hatching early life stages) also induced proteomic changes which have a complex relationship with tumorigenesis or cancer progression; downregulation of alpha-1-antiprotease-like protein precursor, vigilin isoform X2 and nucleoside diphosphate kinase (YSL) and upregulation of hyperosmotic glycine rich protein (first feeders). In bystander fish some proteomic changes were similar to those induced by irradiation: upregulation of haemoglobin subunit beta (48 h egg), haemoglobin (eyed eggs), actin-related protein 2/3 complex subunit 4, hyperosmotic glycine rich protein (first feeders), and downregulation of alpha-1-antiprotease-like protein, vigilin isoform X2, nucleoside diphosphate kinase (YSL), pyruvate kinase PKM-like protein and ubiquitin-40S ribosomal protein S27a-like (first feeders). Other proteomic changes were unique to bystander fish; downregulation of TPI, ubiquitin-40S ribosomal protein S2 (eyed egg), cofilin-2, cold-inducible RNA-binding protein B-like isoform X3 (YSL) and superoxide dismutase (first feeder), and upregulation of haemoglobin subunit alpha, collagen 1a1 precursor, apolipoprotein A-1-1 and A-1-2 precursor (first feeders). These bystander effect proteomic changes have been shown to be overwhelmingly anti-tumorigenic or protective of the fish gill.
Collapse
Affiliation(s)
- Richard W Smith
- Department of Animal Biosciences, University of Guelph, Guelph Ontario Canada; Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton Ontario Canada.
| | - Richard D Moccia
- Department of Animal Biosciences, University of Guelph, Guelph Ontario Canada
| | - Colin B Seymour
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton Ontario Canada
| | - Carmel E Mothersill
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton Ontario Canada
| |
Collapse
|
19
|
Global Proteomics-based Identification and Validation of Thymosin Beta-4 X-Linked as a Prognostic Marker for Head and Neck Squamous Cell Carcinoma. Sci Rep 2017; 7:9031. [PMID: 28831179 PMCID: PMC5567379 DOI: 10.1038/s41598-017-09539-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 07/26/2017] [Indexed: 12/14/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) represents a major health concern worldwide. We applied the matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry (IMS) to analyze paired normal (N) and tumor (T) samples from head and neck squamous cell carcinoma as well as liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis in HNSCC cell lines to identify tumor-associated biomarkers. Our results showed a number of proteins found to be over-expressed in HNSCC. We identified thymosin beta-4 X-linked (TMSB4X) is one of the most significant candidate biomarkers. Higher TMSB4X expression in the tumor was found by N/T-paired HNSCC samples at both RNA and protein level. Overexpression of TMSB4X was found significantly associated with poor prognosis of overall survival (OS, P = 0.006) and recurrence-free survival (RFS, P = 0.013) in HNSCC patients. Silencing of TMSB4X expression in HNSCC cell line reduced the proliferation and invasion ability in vitro, as well as inhibited the cervical lymph node metastasis in vivo. Altogether, our global proteomics analysis identified that TMSB4X is a newly discovered biomarker in HNSCC whose functions resulted in enhanced proliferation and metastasis in vitro and in vivo. TMSB4X may be a potential therapeutic target for treating HNSCC patients.
Collapse
|
20
|
Li L, Yan LH, Manoj S, Li Y, Lu L. Central Role of CEMIP in Tumorigenesis and Its Potential as Therapeutic Target. J Cancer 2017; 8:2238-2246. [PMID: 28819426 PMCID: PMC5560141 DOI: 10.7150/jca.19295] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/25/2017] [Indexed: 02/06/2023] Open
Abstract
CEMIP (KIAA1199) was identified as migratory indicator protein which had been crudely studied in the last decade. Firstly its mutation site was reported to cause hearing loss due to the folding change of protein structure, meanwhile the over-expression of CEMIP referred to dreadful invasion and uncontrolled proliferation of tumor with distant metastasis, dedifferentiation, and limited survival opportunity of patients. Especially, over-expressed CEMIP also protected malignant tumor from strict microenvironment in hypoxia, low glucose and cracked barrier, leading to enhanced adaptability of tumor by stimulating the Wnt, EGFR, FGFR pathway. Here, we intend to elaborate the clinical function and dysregulation of CEMIP under the tumorous circumstance since CEMIP plays an important role in cytokine pathway and its over-expression in tumors provide a novel target for individual therapy. Targeting CEMIP would thereby dysregulate the cytokine pathway which would in turn, decide the growth and death of the vicious tumour cells.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Lin-Hai Yan
- Department of Gastrointestinal Surgery, Affiliated Tumor Hospital of Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Shwetha Manoj
- Quality Assurance Department, Bristol Laboratories Limited, 5 Traynor Way, Whitehouse Business Park, Peterlee, County Durham, SR8 2RU, United Kingdom
| | - Ying Li
- Department of Pharmacy, Guangxi Bone Hospital, Nanning, 530000, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Lu Lu
- Department of Research, Nanning Children Rehabilitation Center, Nanning, 530003, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
21
|
Jia S, Qu T, Wang X, Feng M, Yang Y, Feng X, Ma R, Li W, Hu Y, Feng Y, Ji K, Li Z, Jiang W, Ji J. KIAA1199 promotes migration and invasion by Wnt/β-catenin pathway and MMPs mediated EMT progression and serves as a poor prognosis marker in gastric cancer. PLoS One 2017; 12:e0175058. [PMID: 28422983 PMCID: PMC5397282 DOI: 10.1371/journal.pone.0175058] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/20/2017] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND KIAA1199 was upregulated in diverse cancers, but the association of KIAA1199 with gastric cancer (GC), the biological role of KIAA1199 in GC cells and the related molecular mechanisms remain to be elucidated. METHODS KIAA1199 expression was analysed by reverse transcription-polymerase chain reaction assay (RT-PCR) and immunohistochemistry (IHC) in GC patient tissue. The small hairpin RNA (shRNA) was applied for the knockdown of endogenous KIAA1199 in NCI-N87 and AGS cells. MTT, colony formation, scratch wounding migration, transwell chamber migration and invasion assays were employed respectively to investigate the role of KIAA1199 in GC cells. The potential signaling pathway of KIAA1199 induced migration and invasion was detected. RESULTS KIAA1199 was upregulated in GC tissue and was an essential independent marker for poor prognosis. Knockdown KIAA1199 suppressed the proliferation, migration and invasion in GC cells. KIAA1199 stimulated the Wnt/β-catenin signaling pathway and the enzymatic activity of matrix metalloproteinase (MMP) family members and thus accelerated the epithelial-to-mesenchymal transition (EMT) progression in GC cells. CONCLUSION These findings demonstrated that KIAA1199 was upregulated in GC tissue and associated with worse clinical outcomes in GC, and KIAA1199 acted as an oncogene by promoting migration and invasion through the enhancement of Wnt/β-catenin signaling pathway and MMPs mediated EMT progression in GC cells.
Collapse
Affiliation(s)
- Shuqin Jia
- Laboratory of Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Center for Molecular Diagnosis, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Tingting Qu
- Center for Molecular Diagnosis, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Xiaohong Wang
- Tissue Bank, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Mengmeng Feng
- Laboratory of Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yang Yang
- Laboratory of Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Xuemin Feng
- Laboratory of Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Ruiting Ma
- Laboratory of Surgery, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Wenmei Li
- Center for Molecular Diagnosis, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ying Hu
- Tissue Bank, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Yi Feng
- Center for Molecular Diagnosis, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ke Ji
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Ziyu Li
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Wenguo Jiang
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| |
Collapse
|
22
|
Oral squamous cell carcinoma: Key clinical questions, biomarker discovery, and the role of proteomics. Arch Oral Biol 2016; 63:53-65. [PMID: 26691574 DOI: 10.1016/j.archoralbio.2015.11.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 09/08/2015] [Accepted: 11/20/2015] [Indexed: 12/19/2022]
|
23
|
Establishment of a new OSCC cell line derived from OLK and identification of malignant transformation-related proteins by differential proteomics approach. Sci Rep 2015; 5:12668. [PMID: 26234610 PMCID: PMC4522661 DOI: 10.1038/srep12668] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 06/29/2015] [Indexed: 12/12/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is usually preceded by the oral premalignant lesions, mainly oral leukoplakia (OLK) after repeated insults of carcinogens, tobacco. B(a)P and DMBA are key carcinogens in tobacco smoke. In the present study, for the first time we established the cancerous cell line OSCC-BD induced by B(a)P/DMBA mixture and transformed from dysplastic oral leukoplakia cell line DOK. Cell morphology, proliferation ability, migration ability, colony formation, and tumorigenicity were studied and confirmed the malignant characteristics of OSCC-BD cells. We further identified the differential proteins between DOK and OSCC-BD cells by stable isotope dimethyl labeling based quantitative proteomic method, which showed 18 proteins up-regulated and 16 proteins down-regulated with RSD < 8%. Differential proteins are mainly related to cell cycle, cell proliferation, DNA replication, RNA splicing and apoptosis. Abberant binding function, catalysis activity and transportor activity of differential proteins might contribute to the malignant transformation of OLK. Of the 34 identified differential proteins with RSD < 8%, 13 novel cancer-related proteins were reported in the present study. This study might provide a new insight into the mechanism of OLK malignant transformation and the potent biomarkers for early diagnosis, meanwhile further facilitate the application of the quantification proteomics to carcinogenesis research.
Collapse
|
24
|
Prediction of recurrence-free survival using a protein expression-based risk classifier for head and neck cancer. Oncogenesis 2015; 4:e147. [PMID: 25893634 PMCID: PMC4491610 DOI: 10.1038/oncsis.2015.7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Revised: 01/28/2015] [Accepted: 02/09/2015] [Indexed: 12/21/2022] Open
Abstract
Loco-regional recurrence in 50% of oral squamous cell carcinoma (OSCC) patients poses major challenge for oncologists. Lack of biomarkers that can predict disease aggressiveness and recurrence risk makes the scenario more dismal. On the basis of our earlier global proteomic analyses we identified five differentially expressed proteins in OSCC. This study aimed to develop protein biomarkers-based prognostic risk prediction model for OSCC. Sub-cellular expression of five proteins, S100A7, heterogeneous nuclear ribonucleoproteinK (hnRNPK), prothymosin α (PTMA), 14-3-3ζ and 14-3-3σ was analyzed by immunohistochemistry in test set (282 Indian OSCCs and 209 normal tissues), correlated with clinic-pathological parameters and clinical outcome over 12 years to develop a risk model for prediction of recurrence-free survival. This risk classifier was externally validated in 135 Canadian OSCC and 96 normal tissues. Biomarker signature score based on PTMA, S100A7 and hnRNPK was associated with recurrence free survival of OSCC patients (hazard ratio=1.11; 95% confidence interval 1.08, 1.13, P<0.001, optimism-corrected c-statistic=0.69) independent of clinical parameters. Biomarker signature score stratified OSCC patients into high- and low-risk groups with significant difference for disease recurrence. The high-risk group had median survival 14 months, and 3-year survival rate of 30%, whereas low-risk group survival probability did not reach 50%, and had 3-year survival rate of 71%. As a powerful predictor of 3-year recurrence-free survival in OSCC patients, the newly developed biomarkers panel risk classifier will facilitate patient counseling for personalized treatment.
Collapse
|
25
|
Ni YH, Ding L, Hu QG, Hua ZC. Potential biomarkers for oral squamous cell carcinoma: proteomics discovery and clinical validation. Proteomics Clin Appl 2014; 9:86-97. [PMID: 25431113 DOI: 10.1002/prca.201400091] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/23/2014] [Accepted: 11/24/2014] [Indexed: 12/31/2022]
Abstract
Oral squamous cell carcinoma (OSCC) is the worldwide concerned cancer. In spite of the advances in treatment, the 5-year survival rate has only increased subtly during the past two decades, which is largely due to the advanced stages of disease at diagnosis and the frequent development of relapse and second primary tumors. Therefore, the identification of underlying OSCC protein biomarker during cancer initiation and progression could aid the diagnosis and treatment of OSCC. In this review, recent researches on proteomics analysis of tissue, saliva, and serum for early detection and evaluation aggressiveness and occurrence of OSCC were summarized. The emphasis is placed on early detection by tissues, saliva, and serum of patients with histologically defined OSCC patients. Although lots of researches for searching OSCC protein biomarker have done, few common protein biomarkers have been detected. Low-redundant protein in tissues, saliva, and serum from OSCC may more accurately reflected the progression of OSCC, so novel approach for the depth research strategy and the sample choice for proteomics are of importance in OSCC biomarker discovery.
Collapse
Affiliation(s)
- Yan-hong Ni
- Nanjing Stomatological Hospital and the State Key Laboratory of Pharmaceutical Biotechnology, School of Stomatology, Nanjing University, Nanjing, P. R. China
| | | | | | | |
Collapse
|
26
|
Frantzi M, Bhat A, Latosinska A. Clinical proteomic biomarkers: relevant issues on study design & technical considerations in biomarker development. Clin Transl Med 2014; 3:7. [PMID: 24679154 PMCID: PMC3994249 DOI: 10.1186/2001-1326-3-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 03/06/2014] [Indexed: 12/11/2022] Open
Abstract
Biomarker research is continuously expanding in the field of clinical proteomics. A combination of different proteomic-based methodologies can be applied depending on the specific clinical context of use. Moreover, current advancements in proteomic analytical platforms are leading to an expansion of biomarker candidates that can be identified. Specifically, mass spectrometric techniques could provide highly valuable tools for biomarker research. Ideally, these advances could provide with biomarkers that are clinically applicable for disease diagnosis and/ or prognosis. Unfortunately, in general the biomarker candidates fail to be implemented in clinical decision making. To improve on this current situation, a well-defined study design has to be established driven by a clear clinical need, while several checkpoints between the different phases of discovery, verification and validation have to be passed in order to increase the probability of establishing valid biomarkers. In this review, we summarize the technical proteomic platforms that are available along the different stages in the biomarker discovery pipeline, exemplified by clinical applications in the field of bladder cancer biomarker research.
Collapse
Affiliation(s)
- Maria Frantzi
- Mosaiques Diagnostics GmbH, Mellendorfer Strasse 7-9, D-30625 Hannover, Germany
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 115 27 Athens, Greece
| | - Akshay Bhat
- Mosaiques Diagnostics GmbH, Mellendorfer Strasse 7-9, D-30625 Hannover, Germany
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Agnieszka Latosinska
- Biotechnology Division, Biomedical Research Foundation Academy of Athens, Soranou Ephessiou 4, 115 27 Athens, Greece
- Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
27
|
ZHANG YONGSHENG, JIA SHUQIN, JIANG WENG. KIAA1199 and its biological role in human cancer and cancer cells (Review). Oncol Rep 2014; 31:1503-8. [PMID: 24573670 DOI: 10.3892/or.2014.3038] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/24/2014] [Indexed: 11/05/2022] Open
|