1
|
Pakpahan ND, Kyawsoewin M, Manokawinchoke J, Termkwancharoen C, Egusa H, Limraksasin P, Osathanon T. Effects of mechanical loading on matrix homeostasis and differentiation potential of periodontal ligament cells: A scoping review. J Periodontal Res 2024; 59:877-906. [PMID: 38736036 DOI: 10.1111/jre.13284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/14/2024]
Abstract
Various mechanical loadings, including mechanical stress, orthodontics forces, and masticatory force, affect the functions of periodontal ligament cells. Regulation of periodontal tissue destruction, formation, and differentiation functions are crucial processes for periodontal regeneration therapy. Numerous studies have reported that different types of mechanical loading play a role in maintaining periodontal tissue matrix homeostasis, and osteogenic differentiation of the periodontal ligament cells. This scoping review aims to evaluate the studies regarding the effects of various mechanical loadings on the secretion of extracellular matrix (ECM) components, regulation of the balance between formation and destruction of periodontal tissue matrix, osteogenic differentiation, and multiple differentiation functions of the periodontal ligament. An electronic search for this review has been conducted on two databases; MEDLINE via PubMed and SCOPUS. Study selection criteria included original research written in English that reported the effects of different mechanical loadings on matrix homeostasis and differentiation potential of periodontal ligament cells. The final 204 articles were mainly included in the present scoping review. Mechanical forces of the appropriate magnitude, duration, and pattern have a positive influence on the secretion of ECM components such as collagen, as well as regulate the secretion of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases. Additionally, these forces regulate a balance between osteoblastic and osteoclast differentiation. Conversely, incorrect mechanical loadings can lead to abnormal formation and destruction of both soft and hard tissue. This review provides additional insight into how mechanical loadings impact ECM homeostasis and multiple differentiation functions of periodontal ligament cells (PDLCs), thus making it valuable for regenerative periodontal treatment. In combination with advancing technologies, the utilization of ECM components, application of different aspects of mechanical force, and differentiation potential of PDLCs could bring potential benefits to future periodontal regeneration therapy.
Collapse
Affiliation(s)
- Novena Dameria Pakpahan
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Maythwe Kyawsoewin
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jeeranan Manokawinchoke
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Chutimon Termkwancharoen
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Hiroshi Egusa
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
- Center for Advanced Stem Cell and Regenerative Research, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Phoonsuk Limraksasin
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
- Division of Molecular and Regenerative Prosthodontics, Tohoku University Graduate School of Dentistry, Sendai, Miyagi, Japan
| | - Thanaphum Osathanon
- Center of Excellence for Dental Stem Cell Biology and Department of Anatomy, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence for Regenerative Dentistry, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Cirino G, Szabo C, Papapetropoulos A. Physiological roles of hydrogen sulfide in mammalian cells, tissues and organs. Physiol Rev 2022; 103:31-276. [DOI: 10.1152/physrev.00028.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
H2S belongs to the class of molecules known as gasotransmitters, which also includes nitric oxide (NO) and carbon monoxide (CO). Three enzymes are recognized as endogenous sources of H2S in various cells and tissues: cystathionine g-lyase (CSE), cystathionine β-synthase (CBS) and 3-mercaptopyruvate sulfurtransferase (3-MST). The current article reviews the regulation of these enzymes as well as the pathways of their enzymatic and non-enzymatic degradation and elimination. The multiple interactions of H2S with other labile endogenous molecules (e.g. NO) and reactive oxygen species are also outlined. The various biological targets and signaling pathways are discussed, with special reference to H2S and oxidative posttranscriptional modification of proteins, the effect of H2S on channels and intracellular second messenger pathways, the regulation of gene transcription and translation and the regulation of cellular bioenergetics and metabolism. The pharmacological and molecular tools currently available to study H2S physiology are also reviewed, including their utility and limitations. In subsequent sections, the role of H2S in the regulation of various physiological and cellular functions is reviewed. The physiological role of H2S in various cell types and organ systems are overviewed. Finally, the role of H2S in the regulation of various organ functions is discussed as well as the characteristic bell-shaped biphasic effects of H2S. In addition, key pathophysiological aspects, debated areas, and future research and translational areas are identified A wide array of significant roles of H2S in the physiological regulation of all organ functions emerges from this review.
Collapse
Affiliation(s)
- Giuseppe Cirino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Csaba Szabo
- Chair of Pharmacology, Section of Medicine, University of Fribourg, Switzerland
| | - Andreas Papapetropoulos
- Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Athens, Greece & Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Greece
| |
Collapse
|
3
|
Sun C, Janjic Rankovic M, Folwaczny M, Otto S, Wichelhaus A, Baumert U. Effect of Tension on Human Periodontal Ligament Cells: Systematic Review and Network Analysis. Front Bioeng Biotechnol 2021; 9:695053. [PMID: 34513810 PMCID: PMC8429507 DOI: 10.3389/fbioe.2021.695053] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023] Open
Abstract
Orthodontic tooth movement is based on the remodeling of tooth-surrounding tissues in response to mechanical stimuli. During this process, human periodontal ligament cells (hPDLCs) play a central role in mechanosensing and mechanotransduction. Various in vitro models have been introduced to investigate the effect of tension on hPDLCs. They provide a valuable body of knowledge on how tension influences relevant genes, proteins, and metabolites. However, no systematic review summarizing these findings has been conducted so far. Aim of this systematic review was to identify all related in vitro studies reporting tension application on hPDLCs and summarize their findings regarding force parameters, including magnitude, frequency and duration. Expression data of genes, proteins, and metabolites was extracted and summarized. Studies' risk of bias was assessed using tailored risk of bias tools. Signaling pathways were identified by protein-protein interaction (PPI) networks using STRING and GeneAnalytics. According to our results, Flexcell Strain Unit® and other silicone-plate or elastic membrane-based apparatuses were mainly adopted. Frequencies of 0.1 and 0.5 Hz were predominantly applied for dynamic equibiaxial and uniaxial tension, respectively. Magnitudes of 10 and 12% were mostly employed for dynamic tension and 2.5% for static tension. The 10 most commonly investigated genes, proteins and metabolites identified, were mainly involved in osteogenesis, osteoclastogenesis or inflammation. Gene-set enrichment analysis and PPI networks gave deeper insight into the involved signaling pathways. This review represents a brief summary of the massive body of knowledge in this field, and will also provide suggestions for future researches on this topic.
Collapse
Affiliation(s)
- Changyun Sun
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| | - Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| | - Sven Otto
- Department of Oral and Maxillofacial Plastic Surgery, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
4
|
Chen L, Lu C, Hua Y. Cystathionine gamma-lyase aggravates periodontal damage in traumatic occlusion mouse models. J Periodontal Res 2020; 55:667-675. [PMID: 32323318 DOI: 10.1111/jre.12753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/13/2020] [Accepted: 03/22/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND OBJECTIVE Though impacts of traumatic occlusion (TO) on periodontal tissues and roles of cystathionine γ-lyase (Cth) gene in the regulation of bone homeostasis have been studied by many, no consensus has been reached so far on whether TO deteriorates the periodontium and precise roles of Cth in occlusal trauma. Therefore, this study aims to investigate the impacts of TO on periodontal tissues and the involvement of Cth gene. METHODS Eighty C57BL/6 wild-type (WT) mice and Cth knockout (Cth-/- ) mice, 8 weeks old, were used in this study. The TO model was established using composite resin bonding on the left maxillary molar for one, two, and three weeks, respectively. Morphological and histological changes in the periodontium were assessed by micro-computed tomography (micro-CT), hematoxylin and eosin (H&E) staining, and tartrate-resistant acid phosphatase (TRAP) staining. Osteoclast-related genes were analyzed by real-time polymerase chain reaction (qPCR). RESULTS It was found that decreased alveolar bone height, expanded bone resorption area, and increased width of periodontal ligament (PDL) occurred in TO models, accompanied by an increased number of osteoclasts in a time-dependent manner by micro-CT and histological staining. Osteoclast-related genes including Ctsk, Mmp9, Rank, Trap, and Rankl/Opg were also up-regulated after one week of modeling. The up-regulated expressions of Cth gene and its protein CTH were observed in TO mouse models. After 1, 2, or 3 weeks of modeling, WT mice showed more severe alveolar bone resorption, wider PDL, higher osteoclast count, and higher levels of osteoclast-related genes Ctsk, Rank, and Rankl/Opg than Cth-/- mice. CONCLUSION TO causes a reduction in alveolar bone height and PDL morphological disorder with their severity increases in a time-dependent manner. Cth aggravates periodontal damage caused by TO.
Collapse
Affiliation(s)
- Liyuan Chen
- Department of Orthodontics, School of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Caizhu Lu
- Department of Orthodontics, School of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| | - Yongmei Hua
- Department of Orthodontics, School of Stomatology, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Tongji University, Shanghai, China
| |
Collapse
|
5
|
Chen L, Mo S, Hua Y. Compressive force-induced autophagy in periodontal ligament cells downregulates osteoclastogenesis during tooth movement. J Periodontol 2019; 90:1170-1181. [PMID: 31077358 DOI: 10.1002/jper.19-0049] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 03/19/2019] [Accepted: 04/28/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Autophagy has recently emerged as a protective mechanism in response to compressive force and an important process in maintenance of bone homeostasis. It appears to be involved in the degradation of osteoclasts, osteoblasts, and osteocytes. The aim of this study was to investigate the role of compressive force-induced autophagy in periodontal ligament (PDL) cells in regulating osteoclastogenesis of orthodontic tooth movement (OTM). METHODS An OTM model and compressive force on PDL cells were employed to investigate the expression of autophagy markers in vivo and in vitro, respectively. Autophagosomes and autolysosomes were observed in PDL cells by transmission electron microscope (TEM) and autophagy LC3 double labelling. 3-Methyladenine (3-MA) and rapamycin were respectively used to inhibit and promote autophagy, and the effect of autophagy on osteoclastogenesis was explored via microcomputed tomography, hematoxylin and eosin (H&E) staining, histochemistry of titrate-resistant acid phosphatase, and real-time polymerase chain reaction (RT-PCR) in vivo. Receptor activator of nuclear factor-kappa B ligand/osteoprotegerin (RANKL/OPG) was investigated by RT-PCR and ELISA in vitro. RESULTS Orthodontic force-induced autophagy was prominent on the pressured side of PDL tissues. Administration of 3-MA downregulated bone density and upregulated osteoclasts, while rapamycin had reverse results in OTM. The autophagy activity increased initially then decreased in PDL cells during compressive force application and responded to light force. In PDL cells, administration of 3-MA upregulated while rapamycin downregulated the RANKL/OPG ratio. CONCLUSION Autophagy is activated by compressive force in PDL cells. Besides, it could modulate OTM by negatively regulating osteoclastogenesis and keep bone homeostasis via RANKL/OPG signaling.
Collapse
Affiliation(s)
- Liyuan Chen
- Department of Orthodontics, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Shenzheng Mo
- Department of Orthodontics, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yongmei Hua
- Department of Orthodontics, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
6
|
Mechanical Stress Modulates the RANKL/OPG System of Periodontal Ligament Stem Cells via α7 nAChR in Human Deciduous Teeth: An In Vitro Study. Stem Cells Int 2019; 2019:5326341. [PMID: 31191674 PMCID: PMC6525817 DOI: 10.1155/2019/5326341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/03/2019] [Accepted: 03/24/2019] [Indexed: 11/29/2022] Open
Abstract
The aim of this study was to investigate the mechanism by which periodontal ligament stem cells (PDLSCs) modulate root resorption of human deciduous teeth under mechanical stress. In this investigation, the PDLSCs were derived from deciduous and permanent teeth at different stages of root resorption. A cyclic hydraulic pressure was applied on the PDLSCs to mimic chewing forces in the oral environment. The cultured cells were characterized using osteogenic and adipogenic differentiation assays, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting analysis. The PDLSCs exhibited the ability to induce osteoclast differentiation under certain mechanical stresses. As the expressions of RUNX2, alkaline phosphatase (ALP), and osteoprotegerin (OPG) were significantly reduced, the receptor activator of the nuclear factor kappa-B ligand (RANKL) was upregulated increasing the RANKL/OPG ratio. Under hydrodynamic pressure at 0-135 kPa, the expressions of alpha 7 nicotinic acetylcholine receptors (α7 nAChR), p-GSK-3β, and active-β-catenin were markedly upregulated in PDLSCs from unresorbed deciduous teeth. Treatment with the α7 nAChR inhibitor alpha-bungarotoxin (α-BTX) and the Wnt pathway inhibitor DKK1 may reverse the mechanical stress inducing upregulation of RANKL and reduction of RUNX2, ALP, and OPG. Alizarin red staining confirmed these results. The mechanical stress applied on the deciduous tooth PDLSCs can induce osteoclastic effects through upregulation of α7 nAChR and activation of the canonical Wnt pathway. It can be suggested that chewing forces may play a major role at the beginning of the physiological root resorption of deciduous teeth.
Collapse
|
7
|
Mo S, Hua Y. Cystathionine gamma lyase-H2S contributes to osteoclastogenesis during bone remodeling induced by mechanical loading. Biochem Biophys Res Commun 2018; 501:471-477. [DOI: 10.1016/j.bbrc.2018.05.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/02/2018] [Indexed: 01/15/2023]
|
8
|
Lambertini E, Penolazzi L, Angelozzi M, Grassi F, Gambari L, Lisignoli G, De Bonis P, Cavallo M, Piva R. The expression of cystathionine gamma-lyase is regulated by estrogen receptor alpha in human osteoblasts. Oncotarget 2017; 8:101686-101696. [PMID: 29254196 PMCID: PMC5731906 DOI: 10.18632/oncotarget.21514] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/04/2017] [Indexed: 12/11/2022] Open
Abstract
Hydrogen sulfide (H2S), generated in the osteoblasts predominantly via cystathionine-γ-lyase (CSE), is bone protective. Previous studies suggested that the onset of bone loss due to estrogen deficiency is associated to decreased levels of H2S and blunted gene expression of CSE. However, there are still a lot of unknowns on how H2S levels influence bone cells function. The present study aims to explore the mechanisms by which estrogen may regulate CSE expression, in particular the role of estrogen receptor alpha (ERα) in human osteoblasts (hOBs). Vertebral lamina derived hOBs were characterized and then assessed for CSE expression by western blot analysis in the presence or absence of ERα overexpression. Bioinformatic analysis, luciferase reporter assay and ChIP assay were performed to investigate ERα recruitment and activity on hCSE gene promoter. Three putative half Estrogen Responsive Elements (EREs) were identified in the hCSE core promoter and were found to participate in the ERα - mediated positive regulation of CSE expression. All osteoblast samples responded to ERα over-expression increasing the levels of CSE protein in a comparable manner. Notably, the ERα recruitment on the regulatory regions of the CSE promoter occurred predominantly in female hOBs than in male hOBs. The obtained results suggest that CSE/H2S system is in relation with estrogen signaling in bone in a gender specific manner.
Collapse
Affiliation(s)
- Elisabetta Lambertini
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Letizia Penolazzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | - Marco Angelozzi
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Laura Gambari
- Ramses Laboratory, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Gina Lisignoli
- Laboratory of Immunorheumatology and Tissue Regeneration, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Pasquale De Bonis
- Department of Neurosurgery, S. Anna University Hospital, Ferrara, Italy
| | - Michele Cavallo
- Department of Neurosurgery, S. Anna University Hospital, Ferrara, Italy
| | - Roberta Piva
- Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Pu H, Hua Y. Hydrogen sulfide regulates bone remodeling and promotes orthodontic tooth movement. Mol Med Rep 2017; 16:9415-9422. [PMID: 29039565 PMCID: PMC5779999 DOI: 10.3892/mmr.2017.7813] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 09/01/2017] [Indexed: 12/20/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gas signaling molecule that has multiple influences on physiological and pathological processes in the mammalian body, including vasodilation, neurotransmission, inflammation, hypoxia sensing and bone remodeling. Our previous studies suggested that H2S might be involved in the periodontal tissue remodeling during the orthodontic tooth movement (OTM) via increasing periodontal ligament cell differentiation, tissue mineralization, bone formation and collagen synthesis. The aim of the present study was to investigate the effects of H2S on alveolar bone remodeling that is associated with tooth movement. Experiments were performed in an OTM mouse model. Sodium hydrosulfide (NaHS), which is a donor of H2S and DL-propargylglycine (PAG) and a cystathionine-γ-lyase (CSE) inhibitor, which could also decrease H2S expression, were administered intraperitoneally and respectively. A total of 60 male C57BL6/J mice were divided into 4 groups; Control, NaHS, PAG and combination (PAG+NaHS). The rate of OTM and the bone mineral density (BMD) of alveolar bone were scanned and measured by micro-computed tomography (micro-CT). The number of osteoclasts and expression of the tumor necrosis factor ligand superfamily member-11 (RANKL), alkaline phosphatase (ALP), osteocalcin (OCN) and osteoprotegerin (OPG) in alveolar bone were accessed to evaluate the osteoclastic activity and osteogenesis with histochemistry of tartrate-resistant acid phosphatase staining, immunohistochemistry and reverse transcription-quantitative polymerase chain reaction. In the alveolar bone, NaHS increased the OTM and decreased the BMD, respectively. PAG significantly decrease OTM and increased the BMD. NaHS combined with PAG rescued the PAG-induced changes in the OTM and the BMD. Additionally, the number of osteoclasts, the expression of RANKL, ALP, OCN and the ratio of RANKL/OPG were significantly up-regulated in the NaHS group. In contrast, PAG down-regulated the number of osteoclasts, the expression of RANKL, ALP, OCN and the ratio of RANKL/OPG. These findings suggested that H2S might facilitate the OTM by enhancing alveolar bone remodeling as a result of an increased osteoclastic activity and osteogenesis.
Collapse
Affiliation(s)
- Haiya Pu
- Department of Orthodontics, School of Dentistry, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200233, P.R. China
| | - Yongmei Hua
- Department of Orthodontics, School of Dentistry, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200233, P.R. China
| |
Collapse
|
10
|
Zheng Y, Liao F, Lin X, Zheng F, Fan J, Cui Q, Yang J, Geng B, Cai J. Cystathionine γ-Lyase-Hydrogen Sulfide Induces Runt-Related Transcription Factor 2 Sulfhydration, Thereby Increasing Osteoblast Activity to Promote Bone Fracture Healing. Antioxid Redox Signal 2017; 27:742-753. [PMID: 28158956 PMCID: PMC5586164 DOI: 10.1089/ars.2016.6826] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
AIMS Hydrogen sulfide (H2S) plays an essential role in bone formation, in part, by inhibiting osteoclast differentiation, maintaining mesenchymal stem cell osteogenesis ability, or reducing osteoblast injury. We aimed to investigate the role of H2S in osteoblast function and its possible molecular target. RESULTS In this study, we found that cystathionine γ-lyase (CSE) majorly contributed to endogenous H2S production in the primary osteoblast. Overexpressed CSE increased osteoblast differentiation and maturation with higher bone morphogenetic protein 2 and osteopontin expression, alkaline phosphatase activity, and calcium nodule formation; in contrast, knockdown of CSE had opposite effects. Runt-related transcript factor 2 (RUNX2) is required for osteoblast biologic function. CSE-H2S increased nuclear RUNX2 accumulation, DNA binding activity, and target gene transcription. Protein sulfhydration is a common signal by H2S. We confirmed that RUNX2 was also sulfhydrated by H2S. This chemical modification enhanced RUNX2 transactivation, which was blocked by dithiothreitol (DTT, sulfhydration remover). Mutation of two cysteine sites in the runt domain of RUNX2 abolished H2S-induced RUNX2 sulfhydration and transactivation. In a bone -fracture rat model, overexpressed CSE promoted bone healing, which confirmed the effect of CSE-H2S on osteoblasts. INNOVATION CSE-H2S is a dominant H2S generation system in osteoblasts and promotes osteoblast activity by the RUNX2 pathway, with RUNX2 sulfhydration as a novel transactivation regulation. CONCLUSION CSE-H2S sulfhydrated RUNX2 enhanced its transactivation and increased osteoblast differentiation and maturation, thereby promoting bone healing. Antioxid. Redox Signal. 27, 742-753.
Collapse
Affiliation(s)
- Yang Zheng
- 1 Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases , Beijing, China .,2 Department of Physiology and Pathophysiology, Department of Osteology-Peking University Third Hospital, Center for Noncoding RNA Medicine, Peking University Health Science Center , Beijing, China
| | - Feng Liao
- 2 Department of Physiology and Pathophysiology, Department of Osteology-Peking University Third Hospital, Center for Noncoding RNA Medicine, Peking University Health Science Center , Beijing, China .,3 Department of Orthopedics, Sichuan Provincial People's Hospital, Chengdu , China
| | - Xianjuan Lin
- 2 Department of Physiology and Pathophysiology, Department of Osteology-Peking University Third Hospital, Center for Noncoding RNA Medicine, Peking University Health Science Center , Beijing, China
| | - Fengjiao Zheng
- 2 Department of Physiology and Pathophysiology, Department of Osteology-Peking University Third Hospital, Center for Noncoding RNA Medicine, Peking University Health Science Center , Beijing, China
| | - Jinghui Fan
- 2 Department of Physiology and Pathophysiology, Department of Osteology-Peking University Third Hospital, Center for Noncoding RNA Medicine, Peking University Health Science Center , Beijing, China
| | - Qinghua Cui
- 2 Department of Physiology and Pathophysiology, Department of Osteology-Peking University Third Hospital, Center for Noncoding RNA Medicine, Peking University Health Science Center , Beijing, China
| | - Jichun Yang
- 2 Department of Physiology and Pathophysiology, Department of Osteology-Peking University Third Hospital, Center for Noncoding RNA Medicine, Peking University Health Science Center , Beijing, China
| | - Bin Geng
- 1 Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases , Beijing, China .,2 Department of Physiology and Pathophysiology, Department of Osteology-Peking University Third Hospital, Center for Noncoding RNA Medicine, Peking University Health Science Center , Beijing, China
| | - Jun Cai
- 1 Hypertension Center, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Diseases , Beijing, China
| |
Collapse
|
11
|
Qin J, Hua Y. Effects of hydrogen sulfide on the expression of alkaline phosphatase, osteocalcin and collagen type I in human periodontal ligament cells induced by tension force stimulation. Mol Med Rep 2016; 14:3871-7. [DOI: 10.3892/mmr.2016.5680] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 08/02/2016] [Indexed: 11/05/2022] Open
|
12
|
Jiang Z, Hua Y. Hydrogen sulfide promotes osteogenic differentiation of human periodontal ligament cells via p38-MAPK signaling pathway under proper tension stimulation. Arch Oral Biol 2016; 72:8-13. [PMID: 27522508 DOI: 10.1016/j.archoralbio.2016.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 07/27/2016] [Accepted: 08/04/2016] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Hydrogen sulfide (H2S), one of endogenous gaseous signalling molecules, can be induced by mechanical force stimulation on human periodontal ligament cells (hPDLCs). Little is known about the mechanism of H2S on the osteogenic differentiation although previous studies have demonstrated that H2S stimulated or inhibited osteoclastic differentiation. The present study was to investigate whether H2S played a regulatory role in osteogenic differentiation of the periodontal tissue remodeling and the involvement of mitogen-activated protein kinase (MAPK) signaling in this process. DESIGN hPDLCs were applied with cycle tension force for 6h, 12h, 24h or 48h to select the optimal time for force application. Then the effects of H2S on hPDLCs osteogenic differentiation were investigated. Signal-regulated kinases p38-MAPK and ERK activities with H2S treatment were measured. Finally, specific MAPK inhibitors SB203580 and U0126 were employed to investigate the involvement of the two kinases in hPDLCs osteogenic differentiation with H2S pre-treatment. RESULTS Tension stimulation promoted mRNA and protein expression of ALP, OCN and Runx2 in hPDLCs. The expression of ALP, OCN and Runx2 increased in a concentration-dependent manner with H2S pre-treatment. Importantly, p38-MAPK and ERK were activated in different ways upon induction by H2S. Furthermore, expression of Runx2, ALP and OCN, the osteogenic regulators, was reversed by SB203580 and U0126. CONCLUSIONS H2S could promote osteogenic differentiation of hPDLCs by activating p38-MAPK and ERK signaling pathways.
Collapse
Affiliation(s)
- Zhaoxia Jiang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Orthodontics, School of Dentistry, Tongji University, 399 Middle Yan Chang Rd, Shanghai, China
| | - Yongmei Hua
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Department of Orthodontics, School of Dentistry, Tongji University, 399 Middle Yan Chang Rd, Shanghai, China.
| |
Collapse
|
13
|
Impact of the uremic milieu on the osteogenic potential of mesenchymal stem cells. PLoS One 2015; 10:e0116468. [PMID: 25635832 PMCID: PMC4312090 DOI: 10.1371/journal.pone.0116468] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/09/2014] [Indexed: 01/04/2023] Open
Abstract
Human mesenchymal stem cells (hMSCs), the precursors of osteoblasts during osteogenesis, play a role in the balance of bone formation and resorption, but their functioning in uremia has not been well defined. To study the effects of the uremic milieu on osteogenic properties, we applied an in vitro assay culturing hMSCs in osteogenic medium supplemented with serum from healthy donors and from uremic patients on hemodialysis. Compared to control, serum from uremic patients induces, in hMSC cultures, a modification of several key regulators of bone remodeling, in particular a reduction of the ratio Receptor Activator of Nuclear factor Kappa B Receptor (RANKL) over osteoprotegerin, indicating an adaptive response of the system to favor osteogenesis over osteoclastosis. However, the levels of osteopontin, osteocalcin, and collagen type I, are increased in cell medium, while BMP-2, and alizarin red staining were decreased, pointing to a reduction of bone formation favoring resorption. Selected uremic toxins, such as p-cresylsulfate, p-cresylglucuronide, parathyroid hormone, indoxyl sulfate, asymmetric dimethylarginine, homocysteine, were able to mimic some of the effects of whole serum from uremic patients. Serum from cinacalcet-treated patients antagonizes these effects. Hydrogen sulfide (H2S) donors as well as hemodialysis treatment are able to induce beneficial effects. In conclusion, bone modifications in uremia are influenced by the capability of the uremic milieu to alter hMSC osteogenic differentiation. Cinacalcet, H2S donors and a hemodialysis session can ameliorate the hampered calcium deposition.
Collapse
|
14
|
Yang Y, Zhang L, Liao C, Lu J, Zhang C. Effects of Tension Force on Proliferation and Differentiation of Human Periodontal Ligament Cells Induced by Lipopolysaccharides. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/jbm.2014.23003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|