1
|
Rastogi V, Chaurasia S, Maddheshiya N, Dhungel D. Title of the article: diagnostic markers for odontogenic tumors: an insight: a review. Discov Oncol 2024; 15:558. [PMID: 39404913 PMCID: PMC11480304 DOI: 10.1007/s12672-024-01237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 08/13/2024] [Indexed: 10/19/2024] Open
Abstract
Odontogenic tumors are a group of tumors that originate from the tissues associated with tooth development and are classified into benign or malignant based on their behavior and characteristics. Tumor markers are substances that can be found in the blood, urine, or tissues of individuals with cancer. They are the substances produced either by tumor cells itself or by the body in response to tumor growth, can sometimes be used in the diagnosis, prognosis, and monitoring of various types of tumors. However, the use of tumor markers in odontogenic tumors is not as common as it is in other types of cancers, and their utility in this context is limited. Tumor markers are not the main tools for diagnosing cancer; instead, they serve as supplementary laboratory tests to aid in the diagnosis. Researchers continue to investigate potential biomarkers to improve our understanding of these tumors and their behavior. With this concept in mind, the objective of this study is to elucidate the key diagnostic markers essential for diagnosing odontogenic tumors.
Collapse
Affiliation(s)
- Varun Rastogi
- Department of Oral & Maxillofacial Pathology, Universal College of Medical Sciences, Bhairahawa, Nepal.
| | - Sandhya Chaurasia
- Department of Oral & Maxillofacial Pathology, Universal College of Medical Sciences, Bhairahawa, Nepal
| | | | - Dilasha Dhungel
- Department of Oral & Maxillofacial Pathology, Universal College of Medical Sciences, Bhairahawa, Nepal
| |
Collapse
|
2
|
Hurník P, Putnová BM, Ševčíková T, Hrubá E, Putnová I, Škarda J, Havel M, Res O, Cvek J, Buchtová M, Štembírek J. Metastasising ameloblastoma or ameloblastic carcinoma? A case report with mutation analyses. BMC Oral Health 2023; 23:563. [PMID: 37573343 PMCID: PMC10423427 DOI: 10.1186/s12903-023-03259-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 07/27/2023] [Indexed: 08/14/2023] Open
Abstract
BACKGROUND Ameloblastic carcinoma and metastasising ameloblastoma are rare epithelial odontogenic tumours with aggressive features. Distinguishing between these two lesions is often clinically difficult but necessary to predict tumour behaviour or to plan future therapy. Here, we provide a brief review of the literature available on these two types of lesions and present a new case report of a young man with an ameloblastoma displaying metastatic features. We also use this case to illustrate the similarities and differences between these two types of tumours and the difficulties of their differential diagnosis. CASE PRESENTATION Our histopathological analyses uncovered a metastasising tumour with features of ameloblastic carcinoma, which developed from the ameloblastoma. We profiled the gene expression of Wnt pathway members in ameloblastoma sample of this patient, because multiple molecules of this pathway are involved in the establishing of cell polarity, cell migration or for epithelial-mesenchymal transition during tumour metastasis to evaluate features of tumor behaviour. Indeed, we found upregulation of several cell migration-related genes in our patient. Moreover, we uncovered somatic mutation BRAF p.V600E with known pathological role in cancerogenesis and germline heterozygous FANCA p.S858R mutation, whose interpretation in this context has not been discussed yet. CONCLUSIONS In conclusion, we have uncovered a unique case of ameloblastic carcinoma associated with an alteration of Wnt signalling and the presence of BRAF mutation. Development of harmful state of our patient might be also supported by the germline mutation in one FANCA allele, however this has to be confirmed by further analyses.
Collapse
Affiliation(s)
- Pavel Hurník
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Institute of Clinical and Molecular Pathology and Medical Genetics, Faculty Hospital and Medical Faculty Ostrava, Ostrava, Czech Republic
- Department of Histology and Embryology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Barbora Moldovan Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences, Brno, Czech Republic
| | - Tereza Ševčíková
- Department of Hematooncology, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
- Department of Hematooncology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Eva Hrubá
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Iveta Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences, Brno, Czech Republic
| | - Josef Škarda
- Institute of Clinical and Molecular Pathology and Medical Genetics, Faculty Hospital and Medical Faculty Ostrava, Ostrava, Czech Republic
- Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacky University and University Hospital in Olomouc, Olomouc, Czech Republic
| | - Martin Havel
- Department of Nuclear Medicine, University Hospital Ostrava, Ostrava, Czech Republic
| | - Oldřich Res
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czech Republic
| | - Jakub Cvek
- Department of Oncology, Faculty of Medicine and University Hospital Ostrava, Ostrava, Czech Republic
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.
| | - Jan Štembírek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czech Republic.
- Department of Oral and Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
3
|
Hii EPW, Ramanathan A, Pandarathodiyil AK, Wong GR, Sekhar EVS, Binti Talib R, Zaini ZM, Zain RB. Homeobox Genes in Odontogenic Lesions: A Scoping Review. Head Neck Pathol 2023; 17:218-232. [PMID: 36344906 PMCID: PMC10063701 DOI: 10.1007/s12105-022-01481-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND Homeobox genes play crucial roles in tooth morphogenesis and development and thus mutations in homeobox genes cause developmental disorders such as odontogenic lesions. The aim of this scoping review is to identify and compile available data from the literatures on the topic of homeobox gene expression in odontogenic lesions. METHOD An electronic search to collate all the information on studies on homeobox gene expression in odontogenic lesions was carried out in four databases (PubMed, EBSCO host, Web of Science and Cochrane Library) with selected keywords. All papers which reported expression of homeobox genes in odontogenic lesions were considered. RESULTS A total of eleven (11) papers describing expression of homeobox genes in odontogenic lesions were identified. Methods of studies included next generation sequencing, microarray analysis, RT-PCR, Western blotting, in situ hybridization, and immunohistochemistry. The homeobox reported in odontogenic lesions includes LHX8 and DLX3 in odontoma; PITX2, MSX1, MSX2, DLX, DLX2, DLX3, DLX4, DLX5, DLX6, ISL1, OCT4 and HOX C in ameloblastoma; OCT4 in adenomatoid odontogenic tumour; PITX2 and MSX2 in primordial odontogenic tumour; PAX9 and BARX1 in odontogenic keratocyst; PITX2, ZEB1 and MEIS2 in ameloblastic carcinoma while there is absence of DLX2, DLX3 and MSX2 in clear cell odontogenic carcinoma. CONCLUSIONS This paper summarized and reviews the possible link between homeobox gene expression in odontogenic lesions. Based on the current available data, there are insufficient evidence to support any definite role of homeobox gene in odontogenic lesions.
Collapse
Affiliation(s)
- Erica Pey Wen Hii
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Anand Ramanathan
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | | | - Gou Rean Wong
- Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | - E V Soma Sekhar
- Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| | | | - Zuraiza Mohamad Zaini
- Department of Oral & Maxillofacial Clinical Sciences, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Rosnah Binti Zain
- Oral Cancer Research & Coordinating Centre, Faculty of Dentistry, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Faculty of Dentistry, MAHSA University, Jenjarom, Selangor, Malaysia
| |
Collapse
|
4
|
Herreros-Pomares A, Llorens C, Soriano B, Bagan L, Moreno A, Calabuig-Fariñas S, Jantus-Lewintre E, Bagan J. Differentially methylated genes in proliferative verrucous leukoplakia reveal potential malignant biomarkers for oral squamous cell carcinoma. Oral Oncol 2021; 116:105191. [PMID: 33657465 DOI: 10.1016/j.oraloncology.2021.105191] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/31/2020] [Accepted: 01/13/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To explore the pathophysiology of proliferative verrucous leucoplakia (PVL) through a methylated DNA immunoprecipitation and high-throughput sequencing (MeDIP-seq) case-control study. MATERIALS AND METHODS Oral biopsies from ten PVL patients and five healthy individuals were obtained and used to compare their epigenetic patterns. Network biology methods and integrative analyses of MeDIP-seq and RNAseq data were applied to investigate functional relations among differentially methylated genes (DMGs). The value of selected genes as malignant biomarkers was evaluated in a large cohort of oral squamous cell carcinoma (OSCC) patients from TCGA. RESULTS A total of 4647 differentially methylated regions were found, with a prominent state of hypermethylation in PVL patients. At the gene level, differentially methylated regions (DMRs) covered 826 genes with distinct roles, including transcription factors and binding proteins with functions in cell adhesion, migration, proliferation, regulation of transcription, bone morphogenesis, and cell signalling. Network analysis revealed three major hubs, two of them collecting proteins related to the response of the patients to PVL and treatment and one hub collecting proteins related to PVL and cancer. The integrative analysis revealed 8 genes (ARTN, CD8A, GATA3, HOXD10, MYO7A, OSR2, PLCB1, and SPOCK2) significantly upregulated in PVL compared to control and 5 genes (ANKRD6, DLG2, GPX3, PITX2, and ZNF736) significantly downregulated. The status of de-regulation found for PVL patients was concordant with what was found for OSCC samples compared to normal adjacent tissue. CONCLUSION Our findings show the potential of methylation markers in PVL and suggest novel OSCC diagnostic biomarkers which may boost the development of novel epigenetic-based therapies.
Collapse
Affiliation(s)
- Alejandro Herreros-Pomares
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain; CIBERONC, Valencia, Spain
| | - Carlos Llorens
- Biotechvana, Parc Cientific, Universitat de València, Paterna, Valencia, Spain
| | - Beatriz Soriano
- Biotechvana, Parc Cientific, Universitat de València, Paterna, Valencia, Spain
| | - Leticia Bagan
- Medicina Oral Unit, Stomatology Department, Valencia University, Spain
| | - Andrea Moreno
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, Valencia, Spain
| | - Silvia Calabuig-Fariñas
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain; CIBERONC, Valencia, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Department of Pathology, Universitat de València, Valencia, Spain
| | - Eloísa Jantus-Lewintre
- Molecular Oncology Laboratory, Fundación Hospital General Universitario de Valencia, Valencia, Spain; CIBERONC, Valencia, Spain; TRIAL Mixed Unit, Centro de Investigación Príncipe Felipe-Fundación para la Investigación del Hospital General Universitario de Valencia, Valencia, Spain; Department of Biotechnology, Universitat Politècnica de València, Valencia, Spain.
| | - José Bagan
- CIBERONC, Valencia, Spain; Medicina Oral Unit, Stomatology Department, Valencia University, Spain; Department of Stomatology and Maxillofacial Surgery, Hospital General Universitario de Valencia, Valencia, Spain.
| |
Collapse
|
5
|
High ELK3 expression is associated with the VEGF-C/VEGFR-3 axis and gastric tumorigenesis and enhances infiltration of M2 macrophages. Future Med Chem 2020; 12:2209-2224. [PMID: 33191789 DOI: 10.4155/fmc-2019-0337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Aim: To assess the expression and effect of ELK3 in gastric cancer, along with its associations with the VEGF-C/VEGFR-3 axis, IC50 of the VEGFR-3 inhibitor axitinib and immune infiltration of M2-polarized macrophages in gastric cancer, and to analyze the possible epigenetic regulation mechanism. Materials & methods: Expression profiles and methylation data from 1645 samples were obtained and examined from multi-institutional public datasets. The associations were assessed by multiple analysis methods. Results: Elevated ELK3 is associated with the VEGF-C/VEGFR-3 axis and tumorigenesis, reduces the effect of axitinib in vitro, enhances immune infiltration of M2 macrophages and affects clinical outcomes. Hypomethylation contributes to the upregulation of ELK3 in gastric cancer. Conclusions: ELK3 is a potential therapeutic target which reduces the effect of axitinib and enhances infiltration of M2-polarized macrophages.
Collapse
|
6
|
Imai A, Yamashita A, Ota MS. High-fat diet increases labial groove formation in maxillary incisors and is related to aging in C57BL/6 mice. J Oral Biosci 2019; 62:58-63. [PMID: 31862385 DOI: 10.1016/j.job.2019.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 12/04/2019] [Accepted: 12/04/2019] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The aim of this study was to explore the relationship between the consumption of a high-fat diet and aging-dependent formation of maxillary incisor grooves in C57BL/6 mice, and to identify putative maxillary incisor groove-related genes. METHODS We fed 2-month-old and 16-month-old C57BL/6 mice on either a chow diet or a high-fat diet for three months and observed changes in maxillary incisor grooves. We examined tissue sections of the maxillary incisors with grooves and carried out transcriptome analysis of the apical tissue fragments of maxillary incisors with/without grooves. RESULTS Consumption of a high-fat diet for three months resulted in significant increases in both body weight and the number of incisor grooves. Both the number and frequency of incisor grooves increased in an age-dependent manner from 26 to 28 months, during which time an additional groove appeared. There was abnormal differentiation and apoptosis of ameloblasts on the labial surface at the grooves of the maxillary incisors. Transcriptome analysis identified 23 genes as being specific to 24-month-old mice; these included several genes related to apoptosis and cell differentiation. CONCLUSIONS The study findings indicate that, in C57BL/6 mice, consumption of a high-fat diet increases labial groove formation in maxillary incisors, which is related to aging of the tissue stem cells in the apical root end of the teeth.
Collapse
Affiliation(s)
- Atsuko Imai
- The Division of Clinical Nutrition, Department of Food and Nutrition, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Atsuko Yamashita
- Laboratory of Anatomy and Physiology, Department of Food and Nutrition, Japan Women's University, Bunkyo-ku, Tokyo, Japan
| | - Masato S Ota
- Laboratory of Anatomy and Physiology, Department of Food and Nutrition, Japan Women's University, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
7
|
Ding Z, Liu J, Wang J, Huang B, Zhong M. Upregulation of eukaryotic translation initiation factor 3 subunit a promotes cell survival in ameloblastoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2019; 128:146-153. [PMID: 31078505 DOI: 10.1016/j.oooo.2019.02.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/01/2019] [Accepted: 02/13/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVES This study aimed to detect the expression of eukaryotic translation initiation factor 3 subunit a (eIF3a) in ameloblastoma (AB) tissues compared with normal oral mucosa (NOM) tissues and investigate the roles of eIF3a in the immortalized ameloblastoma cell line (AM-1) cell proliferation and apoptosis. STUDY DESIGN We performed immunohistochemistry to determine the expression of eIF3a in AB tissues (n = 83) and NOM tissues (n = 20). Real time-quantitative polymerase chain reaction and Western blot analyses were conducted with AB tissues (n = 30) and NOM tissues (n = 6). The correlation between eIF3a expression and the clinical/pathologic features of patients with AB is also presented. The functional role of eIF3a in AM-1 cells was assessed with lentiviral vector-mediated shRNA (small hairpin RNA). RESULTS Our results indicated that eIF3a was significantly upregulated in AB. Additionally, eIF3a knockdown in AM-1 cells significantly inhibited cell proliferation and promoted apoptosis. CONCLUSIONS These data indicate that eIF3a facilitates the survival of AB cells and may serve as a promising therapeutic target in AB.
Collapse
Affiliation(s)
- Zhenjiang Ding
- Department of Pediatric Dentistry, School of Stomatology, China Medical University, Shenyang, Liaoning, China; Department of Oral Histopathology, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Jie Liu
- Department of Central Laboratory, China Medical University, Shenyang, Liaoning, China
| | - Junting Wang
- Department of Oral Histopathology, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Biying Huang
- Department of Oral Histopathology, School of Stomatology, China Medical University, Shenyang, Liaoning, China
| | - Ming Zhong
- Department of Oral Histopathology, School of Stomatology, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|