1
|
Fontelo R, da Costa DS, Reis RL, Novoa-Carballal R, Pashkuleva I. Block copolymer nanopatterns affect cell spreading: Stem versus cancer bone cells. Colloids Surf B Biointerfaces 2022; 219:112774. [PMID: 36067682 DOI: 10.1016/j.colsurfb.2022.112774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022]
Abstract
Bone healing after a tumor removal can be promoted by biomaterials that enhance the bone regeneration and prevent the tumor relapse. Herein, we obtained several nanopatterns by self-assembly of polystyrene-block-poly-(2-vinylpyridine) (PS-b-P2VP) with different molecular weights and investigated the adhesion and morphology of human bone marrow mesenchymal stem cells (BMMSC) and osteosarcoma cell line (SaOS-2) on these patterns aiming to identify topography and chemistry that promote bone healing. We analyzed > 2000 cells per experimental condition using imaging software and different morphometric descriptors, namely area, perimeter, aspect ratio, circularity, surface/area, and fractal dimension of cellular contour (FDC). The obtained data were used as inputs for principal component analysis, which showed distinct response of BMMSC and SaOS-2 to the surface topography and chemistry. Among the studied substrates, micellar nanopatterns assembled from the copolymer with high molecular weight promote the adhesion and spreading of BMMSC and have an opposite effect on SaOS-2. This nanopattern is thus beneficial for bone regeneration after injury or pathology, e.g. bone fracture or tumor removal.
Collapse
Affiliation(s)
- R Fontelo
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - D Soares da Costa
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - R L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - R Novoa-Carballal
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| | - I Pashkuleva
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017 Barco, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga, Guimarães, Portugal.
| |
Collapse
|
2
|
Wang L, Lian J, Xia Y, Guo Y, Xu C, Zhang Y, Xu J, Zhang X, Li B, Zhao B. A study on in vitro and in vivo bioactivity of silk fibroin / nano-hydroxyapatite / graphene oxide composite scaffolds with directional channels. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
3
|
Reggiori F, Molinari M. ER-phagy: mechanisms, regulation and diseases connected to the lysosomal clearance of the endoplasmic reticulum. Physiol Rev 2022; 102:1393-1448. [PMID: 35188422 PMCID: PMC9126229 DOI: 10.1152/physrev.00038.2021] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
ER-phagy (reticulo-phagy) defines the degradation of portions of the endoplasmic reticulum (ER) within lysosomes or vacuoles. It is part of the self-digestion (i.e., auto-phagic) programs recycling cytoplasmic material and organelles, which rapidly mobilize metabolites in cells confronted with nutrient shortage. Moreover, selective clearance of ER subdomains participates to the control of ER size and activity during ER stress, the re-establishment of ER homeostasis after ER stress resolution and the removal of ER parts, in which aberrant and potentially cytotoxic material has been segregated. ER-phagy relies on the individual and/or concerted activation of the ER-phagy receptors, ER peripheral or integral membrane proteins that share the presence of LC3/Atg8-binding motifs in their cytosolic domains. ER-phagy involves the physical separation of portions of the ER from the bulk ER network, and their delivery to the endolysosomal/vacuolar catabolic district. This last step is accomplished by a variety of mechanisms including macro-ER-phagy (in which ER fragments are sequestered by double-membrane autophagosomes that eventually fuse with lysosomes/vacuoles), micro-ER-phagy (in which ER fragments are directly engulfed by endosomes/lysosomes/vacuoles), or direct fusion of ER-derived vesicles with lysosomes/vacuoles. ER-phagy is dysfunctional in specific human diseases and its regulators are subverted by pathogens, highlighting its crucial role for cell and organism life.
Collapse
Affiliation(s)
- Fulvio Reggiori
- Department of Biomedical Sciences of Cells & Systems, grid.4830.fUniversity of Groningen, Netherlands
| | - Maurizio Molinari
- Protein Folding and Quality Control, grid.7722.0Institute for Research in Biomedicine, Bellinzona, Switzerland
| |
Collapse
|
4
|
Wei T, Li J, Sun H, Jiang M, Yang Y, Luo X, Liu T. Verification of osteoblast differentiation on airborne-particle abrasion, large-grit, acid-etched surface of titanium implants regulated by yes-associated protein and transcriptional coactivator with PDZ-binding motif. J Oral Sci 2019; 61:431-440. [PMID: 31327805 DOI: 10.2334/josnusd.18-0112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Although airborne-particle abrasion, large-grit, acid-etched (SLA) surface technology can promote implant osseointegration; its mechanism remains unclear. By preparing the SLA titanium (Ti) plate (SLA Ti) and Polished Ti plate (Polished Ti), this experiment investigates the expression and distribution of the Yes-associated protein (YAP) and transcriptional coactivator with the PDZ-binding motif (TAZ) in MC3T3-E1 cells. In addition, gene YAP and TAZ silencing on the SLA Ti was conducted to observe changes in the osteoblast differentiation markers, runt-related transcription factor-2 (Runx2) and bone sialoprotein (BSP). The results demonstrated that SLA Ti surface microtopography could induce YAP/TAZ's transfer from the cytoplasm to the nuclei of MC3T3-E1 cells. The expression of YAP/TAZ increased in terms of mRNA and protein. After silencing the YAP/TAZ genes, Runx2 and BSP decreased, suggesting that YAP/TAZ plays an important regulatory role in this process. Meanwhile, the results also showed that SLA microtopography enhanced the expression of integrins α1, α2, and β1. After silencing the integrin α1, α2, and β1 genes, YAP and TAZ decreased in terms of mRNA and protein. Therefore, this experiment was the first to confirm that SLA surface microtopography facilitates osteoblast differentiation by regulating YAP/TAZ and confirms that the process can be related to integrins α1, α2, and β1.
Collapse
Affiliation(s)
- Ting Wei
- Department of Prosthodontics, School of Stomatology, Shandong University.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University
| | - Jiayi Li
- Department of Oral and Maxillofacial-Head Neck Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine
| | - Huiqiang Sun
- Department of Prosthodontics, School of Stomatology, Shandong University.,Shandong Provincial Key Laboratory of Oral Tissue Regeneration, School of Stomatology, Shandong University
| | - Mengyang Jiang
- Department of Prosthodontics, School of Stomatology, Shandong University
| | - Yun Yang
- Department of Prosthodontics, School of Stomatology, Shandong University
| | - Xiayan Luo
- Department of Prosthodontics, School of Stomatology, Shandong University
| | - Tingsong Liu
- Department of Prosthodontics, School of Stomatology, Shandong University
| |
Collapse
|
5
|
Lyu M, Zheng Y, Jia L, Zheng Y, Liu Y, Lin Y, Di P. Genome-wide DNA-methylation profiles in human bone marrow mesenchymal stem cells on titanium surfaces. Eur J Oral Sci 2019; 127:196-209. [PMID: 30791149 DOI: 10.1111/eos.12607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
The characteristics of titanium (Ti) have been shown to influence dental implant fixation. Treatment of surfaces using the sandblasted, large-grit, acid-etched (SLA) method is widely used to provide effective osseointegration. However, the DNA methylation-associated mechanism by which SLA surface treatment affects osseointegration of human bone marrow mesenchymal stem cells (hBMSCs) remains elusive. Genome-wide methylation profiling of hBMSCs on SLA-treated and machined smooth Ti was performed using Illumina Infinium Methylation EPIC BeadChip at day 7 of osteogenic induction. In total, 2,846 CpG sites were differentially methylated in the SLA group compared with the machined group. Of these sites, 1,651 (covering 1,066 genes) were significantly hypermethylated and 1,195 (covering 775 genes) were significantly hypomethylated. Thirty significant enrichment pathways were observed, with Wnt signaling being the most significant. mRNA expression was identified by microarray and combined with DNA-methylation profiles. Thirty-seven genes displayed negative association between mRNA expression and DNA-methylation level, with the osteogenesis-related genes insulin-like growth factor 2 (IGF2) and carboxypeptidase X, M14 Family Member 2 (CPXM2) showing significant up-regulation and down-regulation, respectively. In summary, our results demonstrate differences between SLA-treated and machined surfaces in their effects on genome-wide DNA methylation and enrichment of osteogenic pathways in hBMSCs. We provide novel insights into genes and pathways affected by SLA treatment in hBMSCs at the molecular level.
Collapse
Affiliation(s)
- Mingyue Lyu
- Department of Implantology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Lingfei Jia
- Department of Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yan Zheng
- Department of Implantology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Yanping Liu
- Department of Implantology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ye Lin
- Department of Implantology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ping Di
- Department of Implantology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
6
|
Ardeshirylajimi A, Golchin A, Khojasteh A, Bandehpour M. Increased osteogenic differentiation potential of MSCs cultured on nanofibrous structure through activation of Wnt/β-catenin signalling by inorganic polyphosphate. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:S943-S949. [PMID: 30489168 DOI: 10.1080/21691401.2018.1521816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Abdolreza Ardeshirylajimi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Golchin
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Arash Khojasteh
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- Department of Biotechnology, School of Advanced Technologies in Medicine, Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Calciolari E, Donos N. The use of omics profiling to improve outcomes of bone regeneration and osseointegration. How far are we from personalized medicine in dentistry? J Proteomics 2018; 188:85-96. [DOI: 10.1016/j.jprot.2018.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 12/12/2022]
|
8
|
Jiang Z, Wang H, Yu K, Feng Y, Wang Y, Huang T, Lai K, Xi Y, Yang G. Light-Controlled BMSC Sheet-Implant Complexes with Improved Osteogenesis via an LRP5/β-Catenin/Runx2 Regulatory Loop. ACS APPLIED MATERIALS & INTERFACES 2017; 9:34674-34686. [PMID: 28879758 DOI: 10.1021/acsami.7b10184] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The combination of bone marrow mesenchymal stem cell (BMSC) sheets and titanium implants (BMSC sheet-implant complexes) can accelerate osseointegration. However, methods of fabricating BMSC sheet-implant complexes are quite limited, and the survival of BMSC sheet-implant complexes is one of the key barriers. Here, we show that a light-controlled fabricating system can generate less injured BMSC sheet-implant complexes with improved viability and osteogenesis and that noninvasive monitoring of the viability of BMSC sheet-implant complexes using a lentiviral delivery system is feasible. Enhanced green fluorescent protein- and luciferase-expressing BMSC sheets were used to track the viability of BMSC sheet-implant complexes in vivo. The experiments of micro-computed tomography analysis and hard tissue slices were performed to evaluate the osteogenic ability of BMSC sheet-implant complexes in vivo. The results showed that BMSC sheet-implant complexes survived for almost 1 month after implantation. Notably, BMSC sheet-implant complexes fabricated by the light-controlled fabricating system had upregulating expression levels of low-density lipoprotein-receptor-related protein 5 (LRP5), β-catenin, and runt-related transcription factor 2 (Runx2) compared to the complexes fabricated by mechanical scraping. Furthermore, we found that Runx2 directly bound to the rat LRP5 promoter and the LRP5/β-catenin/Runx2 regulatory loop contributed to the enhancement of the osseointegrating potentials. In this study, we successfully fabricated BMSC sheet-implant complexes with improved viability and osteogenesis and established a feasible, noninvasive, and continuous method for tracking BMSC sheet-implant complexes in vivo. Our findings lay the foundation for the application of BMSC sheet-implant complexes in vivo and open new avenues for engineered BMSC sheet-implant complexes.
Collapse
Affiliation(s)
- Zhiwei Jiang
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Huiming Wang
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Ke Yu
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Yuting Feng
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Ying Wang
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Tingben Huang
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Kaichen Lai
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Yue Xi
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| | - Guoli Yang
- Department of Implantology, Stomatology Hospital, School of Medicine, ‡Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medicine, and §Department of Oral Medicine, Stomatology Hospital, School of Medicine, Zhejiang University , Yan'an Road, Hangzhou 310058, P. R. China
| |
Collapse
|
9
|
Early Bone Response to Dual Acid-Etched and Machined Dental Implants Placed in the Posterior Maxilla: A Histologic and Histomorphometric Human Study. IMPLANT DENT 2017; 26:24-29. [PMID: 27861190 DOI: 10.1097/id.0000000000000511] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To compare the early bone response to implants with dual acid-etched (DAE) and machined (MA) surface, when placed in the posterior human maxilla. MATERIALS AND METHODS Fourteen patients received 2 implants in the posterior maxilla: 1 DAE and 1 MA. After 2 months, the implants were retrieved for histologic/histomorphometric evaluation. The bone-to-implant contact (BIC%), bone density in the threaded area (BDTA%), and the bone density (BD%) were calculated. The Wilcoxon matched-pairs signed rank test was used to evaluate differences (BIC%, BDTA%, and BD%) between the surfaces. RESULTS In the MA implants, a mean (±SD) BIC%, BDTA%, and BD% of 21.76 (±12.79), 28.58 (±16.91), and 21.54 (±11.67), respectively, was reported. In the DAE implants, a mean (±SD) BIC%, BDTA%, and BD% of 37.49 (±29.51), 30.59 (±21.78), and 31.60 (±18.06), respectively, was reported. Although the mean BIC% of DAE implants value was almost double than that of MA implants, no significant differences were found between the 2 groups with regard to BIC% (P = 0.198) and with regard to BDTA% (P = 0.778) and BD% (P = 0.124). CONCLUSIONS The DAE surface increased the periimplant endosseous healing properties in the native bone of the posterior maxilla.
Collapse
|
10
|
Wang H, Jiang Z, Zhang J, Xie Z, Wang Y, Yang G. Enhanced osteogenic differentiation of rat bone marrow mesenchymal stem cells on titanium substrates by inhibiting Notch3. Arch Oral Biol 2017; 80:34-40. [PMID: 28366784 DOI: 10.1016/j.archoralbio.2017.03.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 03/04/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVE The role of the Notch pathway has already been identified as a crucial regulator of bone development. However, the Notch signaling pathway has gone largely unexplored during osseointegration. This study aims to investigate the role of Notch signaling on osteogenic differentiation of rat derived bone marrow mesenchymal stem cells (BMSCs) on sandblasted, large-grit, acid-etched (SLA) treated Ti disks. METHODS The involved target genes in Notch pathways were identified by in vitro microarray and bioinformatics analyses with or without osteogenic induction. Adhesion, proliferation, and osteogenic related assay were subsequently conducted with target gene shRNA treatment. RESULTS We found that 11 genes in the Notch signaling pathway were differentially expressed after osteogenic induction on SLA-treated Ti disks, which included up-regulated genes (Notch2, Dll1, Dll3, Ncstn, Ncor2, and Hes5) and down-regulated genes (Notch3, Lfng, Mfng, Jag2 and Maml2). With Notch3 shRNA treatment, the adhesion and proliferation of BMSCs on SLA-treated Ti disks were inhibited. Moreover, the expression levels of alkaline phosphatase (ALP), osteocalcin (OCN), calcium deposition, BMP2 and Runx2 increased significantly compared with that observed in control groups, suggesting that the function of Notch3 was inhibitory in the osteogenic differentiation of BMSCs on SLA-treated titanium. CONCLUSIONS Inhibition Notch3 can enhance osteogenic differentiation of BMSCs on SLA-treated Ti disks, which potentially provides a gene target for improving osseointegration.
Collapse
Affiliation(s)
- Huiming Wang
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medical, Zhejiang University, Yan'an Road, Hangzhou, PR China
| | - Zhiwei Jiang
- Department of Implantology, Stomatology Hospital, School of Medical, Zhejiang University, Yan'an Road, Hangzhou, PR China
| | - Jing Zhang
- Department of Implantology, Stomatology Hospital, School of Medical, Zhejiang University, Yan'an Road, Hangzhou, PR China
| | - Zhijian Xie
- Department of Oral and Maxillofacial Surgery, Stomatology Hospital, School of Medical, Zhejiang University, Yan'an Road, Hangzhou, PR China
| | - Ying Wang
- Department of Oral Medicine, Stomatology Hospital, School of Medical, Zhejiang University, Yan'an Road, Hangzhou, PR China
| | - Guoli Yang
- Department of Implantology, Stomatology Hospital, School of Medical, Zhejiang University, Yan'an Road, Hangzhou, PR China.
| |
Collapse
|
11
|
Chen S, Hu X, Zhu W, Jia C, Han X, Yuan J, Sun Z, Yang Z, Geng T, Cui H. Reactivation of development-related genes by the DNA methylation inhibitor 5-Aza-2΄-deoxycytidine in chicken embryo fibroblasts. Poult Sci 2017; 96:1007-1014. [PMID: 28158798 DOI: 10.3382/ps/pew378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Accepted: 09/14/2016] [Indexed: 11/20/2022] Open
|
12
|
Li X, Lin K, Wang Z. Enhanced growth and osteogenic differentiation of MC3T3-E1 cells on Ti6Al4V alloys modified with reduced graphene oxide. RSC Adv 2017. [DOI: 10.1039/c6ra25832h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Graphene and its derivatives, including graphene oxide (GO) and reduced graphene oxide (rGO), have been considered as promising candidates in tissue regeneration.
Collapse
Affiliation(s)
- Xiaojing Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Department of Oral Implant
- School of Stomatology
- Tongji University
- Shanghai
| | - Kaili Lin
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- School of Stomatology
- Tongji University
- Shanghai
- China
| | - Zuolin Wang
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration
- Department of Oral Implant
- School of Stomatology
- Tongji University
- Shanghai
| |
Collapse
|