1
|
Li YF, Luo QP, Yang YX, Li AQ, Zhang XC. A novel bi-layered asymmetric membrane incorporating demineralized dentin matrix accelerates tissue healing and bone regeneration in a rat skull defect model. Biomater Sci 2024; 12:4226-4241. [PMID: 38984522 DOI: 10.1039/d4bm00350k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Objectives: The technique of guided bone regeneration (GBR) has been widely used in the field of reconstructive dentistry to address hard tissue deficiency. The objective of this research was to manufacture a novel bi-layered asymmetric membrane that incorporates demineralized dentin matrix (DDM), a bioactive bone replacement derived from dentin, in order to achieve both soft tissue isolation and hard tissue regeneration simultaneously. Methods: DDM particles were harvested from healthy, caries-free permanent teeth. The electrospinning technique was utilized to synthesize bi-layered DDM-loaded PLGA/PLA (DPP) membranes. We analyzed the DPP bilayer membranes' surface topography, physicochemical properties and degradation ability. Rat skull critical size defects (CSDs) were constructed to investigate in vivo bone regeneration. Results: The synthesized DPP bilayer membranes possessed suitable surface characteristics, acceptable mechanical properties, good hydrophilicity, favorable apatite forming ability and suitable degradability. Micro-computed tomography (CT) showed significantly more new bone formation in the rat skull defects implanted with the DPP bilayer membranes. Histological evaluation further revealed that the bone was more mature with denser bone trabeculae. In addition, the DPP bilayer membrane significantly promoted the expression of the OCN matrix protein in vivo. Conclusions: The DPP bilayer membranes exhibited remarkable biological safety and osteogenic activity in vivo and showed potential as a prospective candidate for GBR applications in the future.
Collapse
Affiliation(s)
- Yan-Fei Li
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
- Department of Stomatology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen 518033, China
| | - Qi-Pei Luo
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Yu-Xin Yang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - An-Qi Li
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| | - Xin-Chun Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University; Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China.
| |
Collapse
|
2
|
de la Fuente M, Delgado D, Beitia M, Barreda-Gómez G, Acera A, Sanchez M, Vecino E. Validation of a rapid collagenase activity detection technique based on fluorescent quenched gelatin with synovial fluid samples. BMC Biotechnol 2024; 24:50. [PMID: 39030513 PMCID: PMC11264812 DOI: 10.1186/s12896-024-00869-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 06/13/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND Measuring collagenase activity is crucial in the field of joint health and disease management. Collagenases, enzymes responsible for collagen degradation, play a vital role in maintaining the balance between collagen synthesis and breakdown in joints. Dysregulation of collagenase activity leads to joint tissue degradation and diseases such as rheumatoid arthritis and osteoarthritis. The development of methods to measure collagenase activity is essential for diagnosis, disease severity assessment, treatment monitoring, and identification of therapeutic targets. RESULTS This study aimed to validate a rapid collagenase activity detection technique using synovial fluid samples. Antibody microarray analysis was initially performed to quantify the levels of matrix metalloproteinase-9 (MMP-9), a major collagenase in joints. Subsequently, the developed gelatin-based test utilizing fluorescence measurement was used to determine collagenase activity. There was a significant correlation between the presence of MMP-9 and collagenase activity. In addition, Lower Limit of Detection and Upper Limit of Detection can be preliminary estimated as 8 ng/mL and 48 ng/mL respectively. CONCLUSIONS The developed technique offers a potential point-of-care assessment of collagenase activity, providing real-time information for clinicians and researchers. By accurately quantifying collagenase activity, healthcare professionals can optimize patient care, improve treatment outcomes, and contribute to the understanding and management of joint-related disorders. Further research and validation are necessary to establish the full potential of this rapid collagenase activity detection method in clinical practice.
Collapse
Affiliation(s)
- Miguel de la Fuente
- Department of Cell Biology and Histology, Experimental Ophthalmo-Biology Group (GOBE, www.ehu.eus/gobe), University of the Basque Country UPV/EHU, Leioa, 48940, Spain
| | - Diego Delgado
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, 01008, Spain
| | - Maider Beitia
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, 01008, Spain
| | | | - Arantxa Acera
- Department of Cell Biology and Histology, Experimental Ophthalmo-Biology Group (GOBE, www.ehu.eus/gobe), University of the Basque Country UPV/EHU, Leioa, 48940, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48001, Spain
| | - Mikel Sanchez
- Advanced Biological Therapy Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, 01008, Spain
- Arthroscopic Surgery Unit, Hospital Vithas Vitoria, Vitoria-Gasteiz, 01008, Spain
| | - Elena Vecino
- Department of Cell Biology and Histology, Experimental Ophthalmo-Biology Group (GOBE, www.ehu.eus/gobe), University of the Basque Country UPV/EHU, Leioa, 48940, Spain.
| |
Collapse
|
3
|
Wu YT, Lu PW, Lin CA, Chang LY, Jaihao C, Peng TY, Lee WF, Teng NC, Lee SY, Dwivedi RP, Negi P, Yang JC. Development of a zinc chloride-based chemo-mechanical system for potential minimally invasive dental caries removal system. J Dent Sci 2024; 19:919-928. [PMID: 38618085 PMCID: PMC11010630 DOI: 10.1016/j.jds.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/01/2023] [Indexed: 04/16/2024] Open
Abstract
Background/purpose The chemo-mechanical caries-removal technique is known to offer advantages of selective dentin caries treatment while leaving healthy dental tissues intact. However, current sodium hypochlorite based reagents usually excessively damage dentin collagen. Therefore, the purpose of this study was to develop a novel chemo-mechanical caries-removal system to preserve the collagen network for subsequent prosthetic restorations. Materials and methods The calfskin-derived collagen was chosen as a model system to investigate the dissolution behavior of collagen under different operating conditions of chemical-ultrasonic treatment systems. The molecular weight, triple-helix structure, the morphology, and functional group of collagen after treatment were investigated. Results Various concentrations of sodium hypochlorite or zinc chloride together with ultrasonic machinery were chosen to investigate. The outcomes of circular dichroism (CD) spectra demonstrated stability of the triple-helix structure after treatment of a zinc chloride solution. In addition, two apparent bands at molecular weights (MWs) of 130 and 121 kDa evidenced the stability of collagen network. The positive 222 nm and 195 nm negative CD absorption band indicated the existence of a triple-helix structure for type I collagen. The preservation of the morphology and functional group of the collagen network on the etched dentin surface were investigated by in vitro dentin decalcification model. Conclusion Unlike NaOCl, the 5 wt% zinc chloride solution combined with ultra-sonication showed dissolution rather than denature as well as degradation of the dentin collagen network. Additional in vivo evaluations are needed to verify its usefulness in clinical applications.
Collapse
Affiliation(s)
- Yu-Tzu Wu
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Po-Wen Lu
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei, Taiwan
| | - Chih-An Lin
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Liang-Yu Chang
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei, Taiwan
| | - Chonlachat Jaihao
- Graduate Institute of Biomedical Materials and Tissue Engineering, Taipei Medical University, Taipei, Taiwan
| | - Tzu-Yu Peng
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Wei-Fang Lee
- School of Dental Technology, Taipei Medical University, Taipei, Taiwan
| | - Nai-Chia Teng
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Yang Lee
- School of Dentistry, Taipei Medical University, Taipei, Taiwan
| | - Ram Prakash Dwivedi
- School of Electrical and Computer Science Engineering, Shoolini University, Himachal Pradesh, India
| | - Poonam Negi
- School of Pharmaceutical Sciences, Biotechnology and Management Sciences, Shoolini University, Himachal Pradesh, India
| | - Jen-Chang Yang
- Graduate Institute of Nanomedicine and Medical Engineering, Taipei Medical University, Taipei, Taiwan
- International Ph.D. Program in Biomedical Engineering, Taipei Medical University, Taipei, Taiwan
- Research Center of Biomedical Device, Taipei Medical University, Taipei, Taiwan
- Research Center of Digital Oral Science and Technology, Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
4
|
Danevitch N, Frankenberger R, Lücker S, Gärtner U, Krämer N. Dentin Bonding Performance of Universal Adhesives in Primary Teeth In Vitro. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5948. [PMID: 37687643 PMCID: PMC10488408 DOI: 10.3390/ma16175948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 09/10/2023]
Abstract
(1) Background: The aim of this in vitro study was to evaluate the micro-tensile bond strength (µ-TBS) of universal adhesives to primary tooth dentin after different storage periods. (2) Methods: Dentin of 100 extracted primary molars was exposed. Dentin surfaces were bonded with six universal adhesives (Adhese®Universal [AU], All-Bond Universal® [ABU], G-Premio Bond [GPB], iBond®Universal [IBU], Prime&Bond active™ [PBa], and Prime&Bond®NT as control [PBN]) and restored with a resin composite build-up (Filtek™ Z250). After 24 h, 6 months, and 12 months of water storage, specimens were cut into sticks, and µ-TBS was measured and analyzed using one-way ANOVA (p < 0.05) for normal distributions and the Mann-Whitney U-test (p < 0.05) for non-normal distribution. Pretesting failures were recorded as 0 MPa. Fracture modes were analyzed under a fluorescence microscope; interfaces were visualized with SEM/TEM. (3) Results: Compared with the reference group (PBN: 32.5/31.2 MPa after 6/12 months), two adhesives showed a significantly higher bond strength after 6 months (AU: 44.1 MPa, ABU: 40.9 MPa; p < 0.05) and one adhesive after 12 months (AU: 42.9 MPa, p < 0.05). GPB revealed significantly lower bond strengths in all storage groups (16.9/15.5/10.9 MPa after 24 h/6 months/12 months; p < 0.05). AU and IBU did not suffer pre-test-failures [PTF]. (4) Conclusions: After 12 months, PBN, IBU, AU, and GPB showed significantly lower results compared ithw initial µ-TBS, whereas AU revealed the highest µ-TBS and no PTF.
Collapse
Affiliation(s)
- Nina Danevitch
- Department of Pediatric Dentistry, Medical Center for Dentistry, University Medical Center Giessen and Marburg, 35392 Giessen, Germany
| | - Roland Frankenberger
- Department of Operative Dentistry, Endodontics, and Pediatric Dentistry, Medical Center for Dentistry, University Medical Center Giessen and Marburg, 35039 Marburg, Germany
| | - Susanne Lücker
- Department of Pediatric Dentistry, Medical Center for Dentistry, University Medical Center Giessen and Marburg, 35392 Giessen, Germany
| | - Ulrich Gärtner
- Institute for Anatomy and Cell Biology, University of Giessen, Aulweg 123, 35392 Giessen, Germany
| | - Norbert Krämer
- Department of Pediatric Dentistry, Medical Center for Dentistry, University Medical Center Giessen and Marburg, 35392 Giessen, Germany
| |
Collapse
|
5
|
Minetti E, Palermo A, Malcangi G, Inchingolo AD, Mancini A, Dipalma G, Inchingolo F, Patano A, Inchingolo AM. Dentin, Dentin Graft, and Bone Graft: Microscopic and Spectroscopic Analysis. J Funct Biomater 2023; 14:jfb14050272. [PMID: 37233382 DOI: 10.3390/jfb14050272] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/01/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
BACKGROUND The use of the human dentin matrix could serve as an alternative to autologous, allogenic, and xenogeneic bone grafts. Since 1967, when the osteoinductive characteristics of autogenous demineralized dentin matrix were revealed, autologous tooth grafts have been advocated. The tooth is very similar to the bone and contains many growth factors. The purpose of the present study is to evaluate the similarities and differences between the three samples (dentin, demineralized dentin, and alveolar cortical bone) with the aim of demonstrating that the demineralized dentin can be considered in regenerative surgery as an alternative to the autologous bone. METHODS This in vitro study analyzed the biochemical characterizations of 11 dentin granules (Group A), 11 demineralized using the Tooth Transformer (Group B), and dentin granules and 11 cortical bone granules (Group C) using scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) to evaluate mineral content. Atomic percentages of C (carbon), O (oxygen), Ca (calcium), and P (phosphorus) were individually analyzed and compared by the statistical t-test. RESULTS The significant p-value (p < 0.05) between group A and group C indicated that these two groups were not significantly similar, while the non-significant result (p > 0.05) obtained between group B and group C indicated that these two groups are similar. CONCLUSIONS The findings support that the hypothesis that the demineralization process can lead to the dentin being remarkably similar to the natural bone in terms of their surface chemical composition. The demineralized dentin can therefore be considered an alternative to the autologous bone in regenerative surgery.
Collapse
Affiliation(s)
- Elio Minetti
- Department of Biomedical, Surgical, Dental Science, University of Milan, 20161 Milan, Italy
| | - Andrea Palermo
- College of Medicine and Dentistry, Birmingham B4 6BN, UK
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | | | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", 70124 Bari, Italy
| | | |
Collapse
|
6
|
Inchingolo AM, Patano A, Di Pede C, Inchingolo AD, Palmieri G, de Ruvo E, Campanelli M, Buongiorno S, Carpentiere V, Piras F, Settanni V, Viapiano F, Hazballa D, Rapone B, Mancini A, Di Venere D, Inchingolo F, Fatone MC, Palermo A, Minetti E, Lorusso F, Scarano A, Sauro S, Tartaglia GM, Bordea IR, Dipalma G, Malcangi G. Autologous Tooth Graft: Innovative Biomaterial for Bone Regeneration. Tooth Transformer® and the Role of Microbiota in Regenerative Dentistry. A Systematic Review. J Funct Biomater 2023; 14:jfb14030132. [PMID: 36976056 PMCID: PMC10058341 DOI: 10.3390/jfb14030132] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/05/2023] Open
Abstract
Different biomaterials, from synthetic products to autologous or heterologous grafts, have been suggested for the preservation and regeneration of bone. The aim of this study is to evaluate the effectiveness of autologous tooth as a grafting material and examine the properties of this material and its interactions with bone metabolism. PubMed, Scopus, Cochrane Library, and Web of Science were searched to find articles addressing our topic published from 1 January 2012 up to 22 November 2022, and a total of 1516 studies were identified. Eighteen papers in all were considered in this review for qualitative analysis. Demineralized dentin can be used as a graft material, since it shows high cell compatibility and promotes rapid bone regeneration by striking an ideal balance between bone resorption and production; it also has several benefits, such as quick recovery times, high-quality newly formed bone, low costs, no risk of disease transmission, the ability to be performed as an outpatient procedure, and no donor-related postoperative complications. Demineralization is a crucial step in the tooth treatment process, which includes cleaning, grinding, and demineralization. Since the presence of hydroxyapatite crystals prevents the release of growth factors, demineralization is essential for effective regenerative surgery. Even though the relationship between the bone system and dysbiosis has not yet been fully explored, this study highlights an association between bone and gut microbes. The creation of additional scientific studies to build upon and enhance the findings of this study should be a future objective of scientific research.
Collapse
Affiliation(s)
| | - Assunta Patano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Chiara Di Pede
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | | | - Giulia Palmieri
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Elisabetta de Ruvo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Merigrazia Campanelli
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Silvio Buongiorno
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Vincenzo Carpentiere
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Fabio Piras
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Vito Settanni
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Fabio Viapiano
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Biagio Rapone
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Daniela Di Venere
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Correspondence: (F.I.); (M.C.F.); Tel.: +39-331-211-1104 (F.I.); +39-3479914635 (M.C.F.)
| | - Maria Celeste Fatone
- PTA Trani-ASL BT, Viale Padre Pio, 76125 Trani, Italy
- Correspondence: (F.I.); (M.C.F.); Tel.: +39-331-211-1104 (F.I.); +39-3479914635 (M.C.F.)
| | - Andrea Palermo
- College of Medicine and Dentistry Birmingham, University of Birmingham, Birmingham B4 6BN, UK
| | - Elio Minetti
- Department of Biomedical, Surgical, and Dental Science, Università Degli Studi di Milano, 20122 Milan, Italy
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy
| | - Salvatore Sauro
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
- Dental Biomaterials and Minimally Invasive Dentistry, Department of Dentistry, Cardenal Herrera-CEU University, CEU Universities, C/Santiago Ramón y Cajal, s/n., Alfara del Patriarca, 46115 Valencia, Spain
| | - Gianluca Martino Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, University of Milan, 20100 Milan, Italy
- UOC Maxillo-Facial Surgery and Dentistry Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
7
|
Inchingolo F, Hazballa D, Inchingolo AD, Malcangi G, Marinelli G, Mancini A, Maggiore ME, Bordea IR, Scarano A, Farronato M, Tartaglia GM, Lorusso F, Inchingolo AM, Dipalma G. Innovative Concepts and Recent Breakthrough for Engineered Graft and Constructs for Bone Regeneration: A Literature Systematic Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1120. [PMID: 35161065 PMCID: PMC8839672 DOI: 10.3390/ma15031120] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND For decades, regenerative medicine and dentistry have been improved with new therapies and innovative clinical protocols. The aim of the present investigation was to evaluate through a critical review the recent innovations in the field of bone regeneration with a focus on the healing potentials and clinical protocols of bone substitutes combined with engineered constructs, growth factors and photobiomodulation applications. METHODS A Boolean systematic search was conducted by PubMed/Medline, PubMed/Central, Web of Science and Google scholar databases according to the PRISMA guidelines. RESULTS After the initial screening, a total of 304 papers were considered eligible for the qualitative synthesis. The articles included were categorized according to the main topics: alloplastic bone substitutes, autologous teeth derived substitutes, xenografts, platelet-derived concentrates, laser therapy, microbiota and bone metabolism and mesenchymal cells construct. CONCLUSIONS The effectiveness of the present investigation showed that the use of biocompatible and bio-resorbable bone substitutes are related to the high-predictability of the bone regeneration protocols, while the oral microbiota and systemic health of the patient produce a clinical advantage for the long-term success of the regeneration procedures and implant-supported restorations. The use of growth factors is able to reduce the co-morbidity of the regenerative procedure ameliorating the post-operative healing phase. The LLLT is an adjuvant protocol to improve the soft and hard tissues response for bone regeneration treatment protocols.
Collapse
Affiliation(s)
- Francesco Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Denisa Hazballa
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
- Kongresi Elbasanit, Rruga: Aqif Pasha, 3001 Elbasan, Albania
| | - Alessio Danilo Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Giuseppina Malcangi
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Grazia Marinelli
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Antonio Mancini
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Maria Elena Maggiore
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Ioana Roxana Bordea
- Department of Oral Rehabilitation, Faculty of Dentistry, Iuliu Hațieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Antonio Scarano
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Marco Farronato
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Gianluca Martino Tartaglia
- UOC Maxillo-Facial Surgery and Dentistry, Department of Biomedical, Surgical and Dental Sciences, School of Dentistry, Fondazione IRCCS Ca Granda, Ospedale Maggiore Policlinico, University of Milan, 20100 Milan, Italy; (M.F.); (G.M.T.)
| | - Felice Lorusso
- Department of Innovative Technologies in Medicine and Dentistry, University of Chieti-Pescara, 66100 Chieti, Italy;
| | - Angelo Michele Inchingolo
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| | - Gianna Dipalma
- Department of Interdisciplinary Medicine, University of Medicine Aldo Moro, 70124 Bari, Italy; (D.H.); (A.D.I.); (G.M.); (G.M.); (A.M.); (M.E.M.); (A.M.I.)
| |
Collapse
|
8
|
Feng S, Li R, Wang Z. Experimental study on the biocompatibility and osteogenesis induction ability of PLLA/DDM scaffolds. Odontology 2022; 110:508-522. [PMID: 35048230 DOI: 10.1007/s10266-021-00683-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 12/21/2021] [Indexed: 11/30/2022]
Abstract
To investigate the characterization and function of a novel porous osteogenic material (PLLA / DDM) containing polylactic acid and demineralized dentin matrix. The surface morphology and composition of the material were observed by SEM and EDS. The physical characteristics of the material were detected by roughness and water contact angle analyses. The rate of weight loss and change in the pH value of the material were observed by scaffold degradation experiments. Four types of material were investigated: polylactic acid (PLLA) scaffold, demineralized dentin matrix (DDM) particles, PLLA/DDM scaffold and a blank control. The osteogenic effect and osteogenic characteristics of the new materials were explored through in vivo and in vitro osteogenic experiments. SEM analysis showed that DDM powder was uniformly distributed in the polylactic acid scaffold, and the water contact angle revealed that the water absorption of the porous scaffold was improved after the addition of DDM powder. The EDS results showed that the peak values of calcium and phosphorus were obviously increased after the addition of DDM powder, and the porosity test showed that the scaffold had higher porosity after the addition of DDM powder. Scaffold degradation experiments revealed that the scaffold gradually degraded with increasing time, and its pH value slightly increased. The results of cell culture and animal model experiments showed that the porous PLLA/DDM scaffold had good bio-compatibility and promoted cell proliferation and differentiation. In histological and micro-CT evaluations, the material showed good bio-compatibility, biodegradability and bone conductivity with host bone tissue in vivo. PLLA / DDM hybrid showed better performance than PLLA or DDM. The biocompatibility and cell growth promoting properties were stronger than those of single material.
Collapse
Affiliation(s)
- Song Feng
- Institute for Implant Center, Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Ruipiao Li
- Institute for Implant Center, Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China
| | - Zhiying Wang
- Institute for Implant Center, Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
| |
Collapse
|
9
|
Degirmenci BU, Degirmenci A, Kara E. Effects of Various Antioxidant Pretreatment Modalities on Adhesion to Sound and Caries-Affected Dentin: An In Vitro Study. JOURNAL OF ADVANCED ORAL RESEARCH 2021. [DOI: 10.1177/2320206821997985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Aim: Natural antioxidants were offered as the answer of dentin adhesion issue. The aim of this study is to investigate the effects of proanthocyanidin and lycopene as pretreatment agents on the sound and caries-affected dentin surface on microtensile bond strength and microleakage. Materials and Methods: This study was designed as in vitro because of that 84 mandibular molar teeth were collected. Forty-two of the included teeth were carious teeth, while the other 42 were without caries. Sixty of them were used for microleakage and 24 for microtensile bond strength testing and scanning electron microscopy analysis. The samples were divided into six subgroups randomly according to dentin pretreatments: 5% proanthocyanidin, 5% lycopene, and no antioxidant application. After the restorative procedures, samples were attached to the microtensile tester. Samples were subjected to tensile stress in the load cell until they broke at a speed of 0.5 mm per min. Microtensile bond strength (µTBS) and microleakage test data were analyzed with two-way analysis of variance, Bonferroni correction, and Tamhane’s T2 tests. Results: Two-way variance analysis showed that dentin pretreatment applications, dentin substrate, and the interaction between these two parameters had statistically significant effects on µTBS values ( P < .001). There was no difference between dentin pretreatment applications in terms of microleakage scores ( P > .05). Conclusion: The application of dentin pretreatment with proanthocyanidin is a successful procedure that increases the bond strength in both dentin substrate, while pretreatment with lycopene in caries-affected dentin reduces it.
Collapse
Affiliation(s)
| | - Alperen Degirmenci
- Department of Restorative Dentistry, Van Yuzuncu Yil University, Van, Turkey
| | - Emine Kara
- Department of Restorative Dentistry, Bursa Oral and Dental Health Care Center, Turkish Health Ministry, Bursa, Turkey
| |
Collapse
|
10
|
Aguirre-López EC, Patiño-Marín N, Martínez-Castañón GA, Medina-Solís CE, Castillo-Silva BE, Cepeda-Argüelles O, Aguilera-Galaviz LA, Rosales-García P. Levels of matrix metalloproteinase-8 and cold test in reversible and irreversible pulpitis. Medicine (Baltimore) 2020; 99:e23782. [PMID: 33350764 PMCID: PMC7769305 DOI: 10.1097/md.0000000000023782] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 11/15/2020] [Indexed: 11/26/2022] Open
Abstract
Researchers have reported false positive/negative results of the cold test in the diagnosis of pulpitis. Knowledge of the correlation between results of the cold test and proteins could aid in decreasing the frequency of incorrect diagnosis. To associate the levels of matrix metalloproteinase-8 (MMP-8) with the responses (in seconds) to the cold test in teeth diagnosed with reversible and irreversible pulpitis.A cross-sectional study was performed. A total of 150 subjects were evaluated, of which 60 subjects met the selection criteria. The participants were divided into 3 groups: Group 1, healthy pulps, 20 subjects with 20 posterior teeth (premolars) with clinically normal pulp tissue; Group 2, reversible pulpitis, 20 patients with 20 teeth diagnosed with reversible pulpitis; and Group 3, irreversible pulpitis, 20 subjects with 20 teeth diagnosed with irreversible pulpitis. All participants were evaluated based on the following variables: medical and dental history, cold test, and expression of MMP-8 by enzyme-linked immunosorbent assay in dentin samples.Responses to the cold test between 4 to 5 seconds (second evaluation; P < .0001) were associated with high levels of MMP-8 (mean, 0.36 ng/mL) in the reversible pulpitis group. In the irreversible pulpitis group, the responses from 6 to ≥10 seconds (second evaluation; P < .0001) were associated with a higher average of MMP-8 levels (mean, 1.97 ng/mL).We determined that an increase in the duration of response to the cold test was associated with an increase in MMP-8 levels (Rho = 0.81, P < .0001) in teeth with pulpitis. The above correlations can be considered an adjunct to the clinical diagnosis of pulpitis.
Collapse
Affiliation(s)
| | - Nuria Patiño-Marín
- Program of Doctorate in Dental Sciences, Department of Clinical Research
| | | | - Carlo Eduardo Medina-Solís
- Department of Dentistry, Institute of Health's Sciences, Autonomous University of The State of Hidalgo, Pachuca, Hidalgo
| | | | | | | | | |
Collapse
|
11
|
Xu J, Li M, Wang W, Wu Z, Wang C, Jin X, Zhang L, Jiang W, Fu B. A novel prime-&-rinse mode using MDP and MMPs inhibitors improves the dentin bond durability of self-etch adhesive. J Mech Behav Biomed Mater 2020; 104:103698. [DOI: 10.1016/j.jmbbm.2020.103698] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/11/2022]
|
12
|
Vasconcelos KR, Arid J, Evangelista S, Oliveira S, Dutra AL, Silva LAB, Segato RAB, Vieira AR, Nelson-Filho P, Küchler EC. MMP13 Contributes to Dental Caries Associated with Developmental Defects of Enamel. Caries Res 2019; 53:441-446. [PMID: 30759432 DOI: 10.1159/000496372] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/03/2018] [Indexed: 11/19/2022] Open
Abstract
The aim of this study was to investigate the association between genetic polymorphisms in MMP8, MMP13, and MMP20 with caries experience and developmental defects of enamel (DDE) in children from the Amazon region of Brazil. Den tal caries and DDE data were collected through clinical examination from 216 children. Genomic DNA was extracted from saliva, and genotyping of selected polymorphisms in MMP8 (rs17099443 and rs3765620), MMP13 (rs478927 and rs2252070), and MMP20 (rs1784418) was performed using TaqMan chemistry and endpoint analysis. χ2 or Fisher's exact tests were used to compare allele and genotype distributions between children with caries experience and caries-free children and between DDE-affected and -unaffected children with an established alpha of 5%. The polymorphism rs478927 in MMP13 was associated with caries experience and DDE (p < 0.05). The analysis performed comparing children with both conditions (caries experience plus DDE) and children with neither of the conditions (caries-free chil dren without DDE) demonstrated that children carrying the MMP13 rs478927 TT genotype were more likely to have concomitant occurrence of these two conditions (OR = 5.8, 95% CI 2.1-15.8; p = 0.0003). In conclusion, the genetic polymorphism rs478927 in MMP13 was associated with caries experience and DDE.
Collapse
Affiliation(s)
- Katia Regina Vasconcelos
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Juliana Arid
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Silvane Evangelista
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Sara Oliveira
- Department of Pediatric Dentistry, Amazonas State University, Manaus, Brazil
| | - André Luiz Dutra
- Department of Pediatric Dentistry, Amazonas State University, Manaus, Brazil
| | - Lea Assed Bezerra Silva
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Raquel Assed Bezerra Segato
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Alexandre Rezende Vieira
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Paulo Nelson-Filho
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Erika Calvano Küchler
- Department of Pediatric Dentistry, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil, .,Positivo University, Curitiba, Brazil,
| |
Collapse
|
13
|
Bono N, Tarsini P, Candiani G. BMP-2 and type I collagen preservation in human deciduous teeth after demineralization. J Appl Biomater Funct Mater 2018; 17:2280800018784230. [PMID: 30045659 DOI: 10.1177/2280800018784230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Great interest has recently been focused on tooth and tooth derivatives as suitable substrates for the treatment of alveolar bone defects. Here, we propose the use of demineralized baby teeth (BT) as potential grafting materials for bone augmentation procedures. METHODS Particles of human BT (Ø < 1 mm) were demineralized by means of a chemical/thermal treatment. Demineralized BT particles were thoroughly characterized by scanning electron microscopy/energy dispersive X-ray analyses to evaluate the effects of the demineralization on BT topography and mineral phase composition, and by enzyme-linked immunosorbent assays (ELISA) to quantify collagen and bone morphogenetic protein-2 (BMP-2) protein contents. The response of SAOS-2 cells to exogenous BMP-2 stimulation was evaluated to identify the minimum BMP-2 concentration able to induce osteodifferentiation in vitro (alkaline phosphatase (ALP) activity). RESULTS The demineralization treatment led to a dramatic decrease in relative Ca and P content (%) of ≈75% with respect to the native BT particles, while preserving native protein conformation and activity. Interestingly, the demineralization process led to a rise in the bioavailability of BMP-2 in BT particles, as compared to the untreated counterparts. The BMP-2 content found in demineralized BT was also proved to be very effective in enhancing ALP activity, thus in the osteodifferentiation of SAOS-2 cells in vitro, as confirmed by cell experiments performed upon exogenously added BMP-2. CONCLUSIONS In this study we demonstrate that the BMP-2 content found in demineralized BT is very effective in inducing cell osteodifferentiation, and strengthens the idea that BTs are very attractive bioactive materials for bone-grafting procedures.
Collapse
Affiliation(s)
- Nina Bono
- 1 Politecnico di Milano Research Unit, National Interuniversity Consortium of Materials Science and Technology - INSTM, Milan, Italy
| | - Paolo Tarsini
- 2 Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Gabriele Candiani
- 1 Politecnico di Milano Research Unit, National Interuniversity Consortium of Materials Science and Technology - INSTM, Milan, Italy.,2 Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| |
Collapse
|
14
|
Dentinogenic effects of extracted dentin matrix components digested with matrix metalloproteinases. Sci Rep 2018; 8:10690. [PMID: 30013085 PMCID: PMC6048071 DOI: 10.1038/s41598-018-29112-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/05/2018] [Indexed: 01/28/2023] Open
Abstract
Dentin is primarily composed of hydroxyapatite crystals within a rich organic matrix. The organic matrix comprises collagenous structural components, within which a variety of bioactive molecules are sequestered. During caries progression, dentin is degraded by acids and enzymes derived from various sources, which can release bioactive molecules with potential reparative activity towards the dentin-pulp complex. While these molecules’ repair activities in other tissues are already known, their biological effects are unclear in relation to degradation events during disease in the dentin-pulp complex. This study was undertaken to investigate the effects of dentin matrix components (DMCs) that are partially digested by matrix metalloproteinases (MMPs) in vitro and in vivo during wound healing of the dentin-pulp complex. DMCs were initially isolated from healthy dentin and treated with recombinant MMPs. Subsequently, their effects on the behaviour of primary pulp cells were investigated in vitro and in vivo. Digested DMCs modulated a range of pulp cell functions in vitro. In addition, DMCs partially digested with MMP-20 stimulated tertiary dentin formation in vivo, which exhibited a more regular tubular structure than that induced by treatment with other MMPs. Our results indicate that MMP-20 may be especially effective in stimulating wound healing of the dentin-pulp complex.
Collapse
|
15
|
Zhou Y, Shimada Y, Matin K, Sadr A, Yoshiyama M, Sumi Y, Tagami J. Assessment of root caries under wet and dry conditions using swept-source optical coherence tomography (SS-OCT). Dent Mater J 2018; 37:880-888. [PMID: 29962412 DOI: 10.4012/dmj.2017-273] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The purpose of this study was to compare optical properties of root caries under two observing conditions using swept-source optical coherence tomography (SS-OCT). In vitro and natural root caries were observed by SS-OCT under wet and dry conditions, followed by confocal laser scanning microscope (CLSM) and transverse microradiography (TMR). Signal intensity (SI), distance between SI peaks (SI-distance) and optical lesion depth were obtained from OCT. Lesion depth was measured from CLSM; lesion depth (LDTMR) and mineral loss (ML) were obtained from TMR. In vitro root caries under wet and dry conditions showed different OCT images and SI patterns. Lesion depth of OCT and that of CLSM, SI-distance and LDTMR, LDTMR and ML significantly correlated. Under dry conditions, half natural root caries showed similar OCT images and SI patterns as in vitro root caries. The base of demineralized dentin could be detected more clearly under dry conditions than under wet conditions.
Collapse
Affiliation(s)
- Yuan Zhou
- Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Yasushi Shimada
- Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University.,Department of Operative Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Khairul Matin
- Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University.,Endowed Department of International Oral Health Science (affiliated with Department of Translational Research), School of Dental Medicine, Tsurumi University
| | - Alireza Sadr
- Biomimetics Biomaterials Biophotonics Biomechanics & Technology Laboratory, Department of Restorative Dentistry, University of Washington
| | - Masahiro Yoshiyama
- Department of Operative Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University
| | - Yasunori Sumi
- Division of Oral and Dental Surgery, Department of Advanced Medicine, National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology
| | - Junji Tagami
- Cariology and Operative Dentistry, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| |
Collapse
|
16
|
Ou Q, Hu Y, Yao S, Wang Y, Lin X. Effect of matrix metalloproteinase 8 inhibitor on resin–dentin bonds. Dent Mater 2018; 34:756-763. [DOI: 10.1016/j.dental.2018.01.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/26/2018] [Accepted: 01/31/2018] [Indexed: 02/08/2023]
|
17
|
Botta SB, Ana PA, Gonçalves MLL, Fernandes KPS, Mesquita-Ferrari RA, de Araújo Prates R, Brugnera A, Bussadori SK. Photodynamic Therapy Associated with a Blue Dye Papain-Based Gel and Evaluation of Its Degradation of Type I Collagen Fibers. Photomed Laser Surg 2018; 36:100-104. [DOI: 10.1089/pho.2017.4342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Sergio Brossi Botta
- Postgraduate Program, Biophotonics Applied to Health Sciences, Nove de Julho University, São Paulo, São Paulo, Brazil
| | - Patricia Aparecida Ana
- Engineering Center, Modeling and Applied Social Sciences, Federal University of ABC, Sao Bernardo do Campo, São Paulo, Brazil
| | | | | | | | - Renato de Araújo Prates
- Postgraduate Program, Biophotonics Applied to Health Sciences, Nove de Julho University, São Paulo, São Paulo, Brazil
| | - Aldo Brugnera
- National Institute of Science and Technology, INCT “Basic Optics Applied to Life Sciences,” IFSC, USP, São Carlos, São Paulo, Brazil
| | - Sandra Kalil Bussadori
- Postgraduate Program, Biophotonics Applied to Health Sciences, Nove de Julho University, São Paulo, São Paulo, Brazil
| |
Collapse
|