1
|
Kadkhoda Z, Motie P, Rad MR, Mohaghegh S, Kouhestani F, Motamedian SR. Comparison of Periodontal Ligament Stem Cells with Mesenchymal Stem Cells from Other Sources: A Scoping Systematic Review of In vitro and In vivo Studies. Curr Stem Cell Res Ther 2024; 19:497-522. [PMID: 36397622 DOI: 10.2174/1574888x17666220429123319] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/31/2021] [Accepted: 03/11/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The application of stem cells in regenerative medicine depends on their biological properties. This scoping review aimed to compare the features of periodontal ligament stem cells (PDLSSCs) with stem cells derived from other sources. DESIGN An electronic search in PubMed/Medline, Embase, Scopus, Google Scholar and Science Direct was conducted to identify in vitro and in vivo studies limited to English language. RESULTS Overall, 65 articles were included. Most comparisons were made between bone marrow stem cells (BMSCs) and PDLSCs. BMSCs were found to have lower proliferation and higher osteogenesis potential in vitro and in vivo than PDLSCs; on the contrary, dental follicle stem cells and umbilical cord mesenchymal stem cells (UCMSCs) had a higher proliferative ability and lower osteogenesis than PDLSCs. Moreover, UCMSCs exhibited a higher apoptotic rate, hTERT expression, and relative telomerase length. The immunomodulatory function of adipose-derived stem cells and BMSCs was comparable to PDLSCs. Gingival mesenchymal stem cells showed less sensitivity to long-term culture. Both pure and mixed gingival cells had lower osteogenic ability compared to PDLSCs. Comparison of dental pulp stem cells (DPSCs) with PDLSCs regarding proliferation rate, osteo/adipogenesis, and immunomodulatory properties was contradictory; however, in vivo bone formation of DPSCs seemed to be lower than PDLSCs. CONCLUSION In light of the performed comparative studies, PDLSCs showed comparable results to stem cells derived from other sources; however, further in vivo studies are needed to determine the actual pros and cons of stem cells in comparison to each other.
Collapse
Affiliation(s)
- Zeinab Kadkhoda
- Department of Periodontology, School of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Parisa Motie
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Maryam Rezaei Rad
- Dental Research Center, Research Institute of Dental Sciences, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sadra Mohaghegh
- Student Research Committee, School of Dentistry, Shahid Beheshti University of Medical Science, Tehran, Iran
| | - Farnaz Kouhestani
- Department of Periodontics, School of Dentistry, Bushehr University of Medical Sciences, Tehran, Iran
| | - Saeed Reza Motamedian
- Dentofacial Deformities Research Center, Research Institute of Dental Sciences, Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
2
|
Roato I, Masante B, Putame G, Massai D, Mussano F. Challenges of Periodontal Tissue Engineering: Increasing Biomimicry through 3D Printing and Controlled Dynamic Environment. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12213878. [PMID: 36364654 PMCID: PMC9655809 DOI: 10.3390/nano12213878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/28/2022] [Accepted: 10/31/2022] [Indexed: 05/14/2023]
Abstract
In recent years, tissue engineering studies have proposed several approaches to regenerate periodontium based on the use of three-dimensional (3D) tissue scaffolds alone or in association with periodontal ligament stem cells (PDLSCs). The rapid evolution of bioprinting has sped up classic regenerative medicine, making the fabrication of multilayered scaffolds-which are essential in targeting the periodontal ligament (PDL)-conceivable. Physiological mechanical loading is fundamental to generate this complex anatomical structure ex vivo. Indeed, loading induces the correct orientation of the fibers forming the PDL and maintains tissue homeostasis, whereas overloading or a failure to adapt to mechanical load can be at least in part responsible for a wrong tissue regeneration using PDLSCs. This review provides a brief overview of the most recent achievements in periodontal tissue engineering, with a particular focus on the use of PDLSCs, which are the best choice for regenerating PDL as well as alveolar bone and cementum. Different scaffolds associated with various manufacturing methods and data derived from the application of different mechanical loading protocols have been analyzed, demonstrating that periodontal tissue engineering represents a proof of concept with high potential for innovative therapies in the near future.
Collapse
Affiliation(s)
- Ilaria Roato
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
- Correspondence: ; Tel.: +39-011-670-3528
| | - Beatrice Masante
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
- PolitoBIOMed Lab and Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 10129 Turin, Italy
| | - Giovanni Putame
- PolitoBIOMed Lab and Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 10129 Turin, Italy
| | - Diana Massai
- PolitoBIOMed Lab and Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy
- Interuniversity Center for the Promotion of the 3Rs Principles in Teaching and Research, 10129 Turin, Italy
| | - Federico Mussano
- Bone and Dental Bioengineering Laboratory, CIR-Dental School, Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
| |
Collapse
|
3
|
Potential Anti-Inflammatory Effects of a New Lyophilized Formulation of the Conditioned Medium Derived from Periodontal Ligament Stem Cells. Biomedicines 2022; 10:biomedicines10030683. [PMID: 35327485 PMCID: PMC8944955 DOI: 10.3390/biomedicines10030683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 11/25/2022] Open
Abstract
The mesenchymal stem cells’ (MSCs) secretome includes the bioactive molecules released in the conditioned medium (CM), such as soluble proteins, free nucleic acids, lipids and extracellular vesicles. The secretome is known to mediate some of the beneficial properties related to MSCs, such as anti-inflammatory, anti-apoptotic and regenerative capacities. In this work, we aim to evaluate the anti-inflammatory potential of a new lyophilized formulation of CM derived from human periodontal ligament stem cells (hPDLSCs). With this aim, we treat hPDLSCs with lipopolysaccharide (LPS) and test the anti-inflammatory potential of lyophilized CM (LYO) through the evaluation of wound closure, transcriptomic and immunofluorescence analysis. LPS treatment increased the expression of TLR4 and of genes involved in its signaling and in p38 and NF-κB activation, also increasing the expression of cytokines and chemokines. Interestingly, LYO downregulated the expression of genes involved in Toll-like receptor 4 (TLR-4), nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and p38 signaling. As a consequence, the genes encoding for cytokines and chemokines were also downregulated. Immunofluorescence acquisitions confirmed the downregulation of TLR-4 and NF-κB with the LYO treatment. Moreover, the LYO treatment also increased hPDLSCs’ migration. LYO was demonstrated to contain transforming growth factor (TGF)-β3 and vascular endothelial growth factor (VEGF). These results suggest that LYO represents an efficacious formulation with anti-inflammatory potential and highlights lyophilization as a valid method to produce stable formulations of MSCs’ secretome.
Collapse
|
4
|
Gugliandolo A, Mazzon E. Dental Mesenchymal Stem Cell Secretome: An Intriguing Approach for Neuroprotection and Neuroregeneration. Int J Mol Sci 2021; 23:ijms23010456. [PMID: 35008878 PMCID: PMC8745761 DOI: 10.3390/ijms23010456] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/28/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are known for their beneficial effects and regenerative potential. In particular, dental-derived MSCs have the advantage of easier accessibility and a non-invasive isolation method. Moreover, thanks to their neural crest origin, dental MSCs seem to have a more prominent neuroregenerative potential. Indeed, in basal conditions they also express neuronal markers. However, it is now well known that the beneficial actions of MSCs depend, at least in part, on their secretome, referring to all the bioactive molecules released in the conditioned medium (CM) or in extracellular vesicles (EVs). In this review we focus on the applications of the secretome derived from dental MSCs for neuroregeneration and neuroprotection. The secretomes of different dental MSCs have been tested for their effects for neuroregenerative purposes, and the secretomes of dental pulp stem cells and stem cells from human exfoliated deciduous teeth are the most studied. Both the CM and EVs obtained from dental MSCs showed that they are able to promote neurite outgrowth and neuroprotective effects. Interestingly, dental-derived MSC secretome showed stronger neuroregenerative and neuroprotective effects compared to that obtained from other MSC sources. For these reasons, the secretome obtained from dental MSCs may represent a promising approach for neuroprotective treatments.
Collapse
|
5
|
Sun J, Guo X, Yu P, Liang J, Mo Z, Zhang M, Yang L, Huang X, Hu B, Liu J, Ouyang Y, He M. Vasorin deficiency leads to cardiac hypertrophy by targeting MYL7 in young mice. J Cell Mol Med 2021; 26:88-98. [PMID: 34854218 PMCID: PMC8742182 DOI: 10.1111/jcmm.17034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/22/2021] [Accepted: 09/30/2021] [Indexed: 01/03/2023] Open
Abstract
Vasorin (VASN) is an important transmembrane protein associated with development and disease. However, it is not clear whether the death of mice with VASN deficiency (VASN-/- ) is related to cardiac dysfunction. The aim of this research was to ascertain whether VASN induces pathological cardiac hypertrophy by targeting myosin light chain 7 (MYL7). VASN-/- mice were produced by CRISPR/Cas9 technology and inbreeding. PCR amplification, electrophoresis, real-time PCR and Western blotting were used to confirm VASN deficiency. Cardiac hypertrophy was examined by blood tests, histological analysis and real-time PCR, and key downstream factors were identified by RNA sequencing and real-time PCR. Western blotting, immunohistochemistry and electron microscopy analysis were used to confirm the downregulation of MYL7 production and cardiac structural changes. Our results showed that sudden death of VASN-/- mice occurred 21-28 days after birth. The obvious increases in cardiovascular risk, heart weight and myocardial volume and the upregulation of hypertrophy marker gene expression indicated that cardiac hypertrophy may be the cause of death in young VASN-/- mice. Transcriptome analysis revealed that VASN deficiency led to MYL7 downregulation, which induced myocardial structure abnormalities and disorders. Our results revealed a pathological phenomenon in which VASN deficiency may lead to cardiac hypertrophy by downregulating MYL7 production. However, more research is necessary to elucidate the underlying mechanism.
Collapse
Affiliation(s)
- Junming Sun
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiaoping Guo
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Ping Yu
- Department of Cardiology, The Second Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, China
| | - Jinning Liang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhongxiang Mo
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Mingyuan Zhang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Lichao Yang
- School of Public Health, Guangxi Medical University, Nanning, China
| | - Xuejing Huang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Bing Hu
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiajuan Liu
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Yiqiang Ouyang
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China
| | - Min He
- Laboratory Animal Center, Guangxi Medical University, Nanning, Guangxi, China.,School of Public Health, Guangxi Medical University, Nanning, China.,Ministry of Education, Key Laboratory of High-Incidence-Tumor Prevention & Treatment, (Guangxi Medical University), Nanning, China
| |
Collapse
|
6
|
Queiroz A, Albuquerque-Souza E, Gasparoni LM, França BND, Pelissari C, Trierveiler M, Holzhausen M. Therapeutic potential of periodontal ligament stem cells. World J Stem Cells 2021; 13:605-618. [PMID: 34249230 PMCID: PMC8246246 DOI: 10.4252/wjsc.v13.i6.605] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/24/2021] [Accepted: 04/22/2021] [Indexed: 02/07/2023] Open
Abstract
Inflammatory periodontal disease known as periodontitis is one of the most common conditions that affect human teeth and often leads to tooth loss. Due to the complexity of the periodontium, which is composed of several tissues, its regeneration and subsequent return to a homeostatic state is challenging with the therapies currently available. Cellular therapy is increasingly becoming an alternative in regenerative medicine/dentistry, especially therapies using mesenchymal stem cells, as they can be isolated from a myriad of tissues. Periodontal ligament stem cells (PDLSCs) are probably the most adequate to be used as a cell source with the aim of regenerating the periodontium. Biological insights have also highlighted PDLSCs as promising immunomodulator agents. In this review, we explore the state of knowledge regarding the properties of PDLSCs, as well as their therapeutic potential, describing current and future clinical applications based on tissue engineering techniques.
Collapse
Affiliation(s)
- Aline Queiroz
- Laboratory of Stem Cell Biology in Dentistry-LABITRON, Department of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Emmanuel Albuquerque-Souza
- Department of Stomatology, Division of Periodontics, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Leticia Miquelitto Gasparoni
- Department of Stomatology, Division of Periodontics, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Bruno Nunes de França
- Department of Stomatology, Division of Periodontics, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Cibele Pelissari
- Laboratory of Stem Cell Biology in Dentistry-LABITRON, Department of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marília Trierveiler
- Laboratory of Stem Cell Biology in Dentistry-LABITRON, Department of Oral and Maxillofacial Pathology, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| | - Marinella Holzhausen
- Department of Stomatology, Division of Periodontics, School of Dentistry, University of São Paulo, São Paulo 05508-000, Brazil
| |
Collapse
|
7
|
Dental Mesenchymal Stem/Progenitor Cells: A New Prospect in Regenerative Medicine. Stem Cells 2021. [DOI: 10.1007/978-3-030-77052-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
El Moshy S, Radwan IA, Rady D, Abbass MMS, El-Rashidy AA, Sadek KM, Dörfer CE, Fawzy El-Sayed KM. Dental Stem Cell-Derived Secretome/Conditioned Medium: The Future for Regenerative Therapeutic Applications. Stem Cells Int 2020; 2020:7593402. [PMID: 32089709 PMCID: PMC7013327 DOI: 10.1155/2020/7593402] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/23/2019] [Accepted: 01/10/2020] [Indexed: 12/13/2022] Open
Abstract
Regenerative medicine literature has proposed mesenchymal stem/progenitor cell- (MSC-) mediated therapeutic approaches for their great potential in managing various diseases and tissue defects. Dental MSCs represent promising alternatives to nondental MSCs, owing to their ease of harvesting with minimally invasive procedures. Their mechanism of action has been attributed to their cell-to-cell contacts as well as to the paracrine effect of their secreted factors, namely, secretome. In this context, dental MSC-derived secretome/conditioned medium could represent a unique cell-free regenerative and therapeutic approach, with fascinating advantages over parent cells. This article reviews the application of different populations of dental MSC secretome/conditioned medium in in vitro and in vivo animal models, highlights their significant implementation in treating different tissue' diseases, and clarifies the significant bioactive molecules involved in their regenerative potential. The analysis of these recent studies clearly indicate that dental MSCs' secretome/conditioned medium could be effective in treating neural injuries, for dental tissue regeneration, in repairing bone defects, and in managing cardiovascular diseases, diabetes mellitus, hepatic regeneration, and skin injuries, through regulating anti-inflammatory, antiapoptotic, angiogenic, osteogenic, and neurogenic mediators.
Collapse
Affiliation(s)
- Sara El Moshy
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Israa Ahmed Radwan
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Dina Rady
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Marwa M. S. Abbass
- Oral Biology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Aiah A. El-Rashidy
- Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Khadiga M. Sadek
- Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Biomaterials Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| | - Christof E. Dörfer
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
| | - Karim M. Fawzy El-Sayed
- Stem cells and Tissue Engineering Research Group, Faculty of Dentistry, Cairo University, Cairo, Egypt
- Clinic for Conservative Dentistry and Periodontology, School of Dental Medicine, Christian Albrechts University, Kiel, Germany
- Oral Medicine and Periodontology Department, Faculty of Dentistry, Cairo University, Cairo, Egypt
| |
Collapse
|
9
|
Giovani PA, Salmon CR, Martins L, Leme AFP, Puppin-Rontani RM, Mofatto LS, Nociti FH, Kantovitz KR. Membrane proteome characterization of periodontal ligament cell sets from deciduous and permanent teeth. J Periodontol 2018; 90:775-787. [PMID: 30499115 DOI: 10.1002/jper.18-0217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 09/24/2018] [Accepted: 09/30/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Physiological roles for the periodontal ligament (PDL) include tooth eruption and anchorage, force absorption, and provision of proprioceptive information. Despite the advances in understanding the biology of PDL cells, there is a lack of information regarding the molecular signature of deciduous (DecPDL) and permanent (PermPDL) PDL tissues. Thus, the present study was designed to characterize the membrane proteome of DecPDL and PermPDL cells. METHODS Primary PDL cells were obtained (n = 6) and a label-free quantitative proteome of cell membrane-enriched components was performed. Proteome findings were validated by quantitative polymerase chain reaction and Western blot assays in fresh human tissues (n = 8) and primary cell cultures (n = 6). In addition, confocal microscopy was used to verify the expression of target factors in the PDL cell cultures. RESULTS Comparative gene ontology enrichment analysis evidenced that most stickling differences involved "endomembrane system" (PICALM, STX4, and LRP10), "hydrolase activity" (NCSTN and XRCC6), "protein binding" (PICALM, STX4, GPNMB, VASP, extended-synaptotagmin 2 [ESYT2], and leucine-rich repeat containing 15 [LRRC15]), and "isomerase activity" (FKBP8). Data are available via ProteomeXchange with identifier PXD010226. At the transcript level, high PICALM in DecPDL and ESYT2 and LRRC15 in PermPDL were confirmed in fresh PDL tissues. Furthermore, Western blot analysis confirmed increased levels of PICALM, LRRC15, and ESYT2 in cells and/or fresh tissues, and confocal microscopy confirmed the trends for PICALM and LRRC15 expression in PDL cells. CONCLUSION We report the first comprehensive characterization of the membrane protein machinery of DecPDL and PermPDL cells, and together, we identified a distinct molecular signature for these cell populations, including unique proteins for DecPDL and PermPDL.
Collapse
Affiliation(s)
- Priscila A Giovani
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas, Campinas, São Paulo, Brazil
| | - Cristiane R Salmon
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Luciane Martins
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Adriana F P Leme
- Brazilian Biosciences National Laboratory, LNBio, CNPEM, Campinas, São Paulo, Brazil
| | - Regina M Puppin-Rontani
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas, Campinas, São Paulo, Brazil
| | - Luciana S Mofatto
- Department of Genetics, Evolution and Bioagents, Institute of Biology, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Francisco H Nociti
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, University of Campinas, Piracicaba, São Paulo, Brazil
| | - Kamila R Kantovitz
- Department of Pediatric Dentistry, Piracicaba Dental School, University of Campinas, Campinas, São Paulo, Brazil.,Department of Dental Materials, São Leopoldo Mandic Research Center, Campinas, São Paulo, Brazil
| |
Collapse
|
10
|
Bonnet AL, Chaussain C, Broutin I, Rochefort GY, Schrewe H, Gaucher C. From Vascular Smooth Muscle Cells to Folliculogenesis: What About Vasorin? Front Med (Lausanne) 2018; 5:335. [PMID: 30564578 PMCID: PMC6288187 DOI: 10.3389/fmed.2018.00335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/15/2018] [Indexed: 01/18/2023] Open
Abstract
First described in 1988, vasorin (VASN) is a transmembrane glycoprotein expressed during early mouse development, and with a less extent, in various organs and tissues (e.g., kidney, aorta, and brain) postnatally. Vasn KO mice die after 3 weeks of life from unknown cause(s). No human disease has been associated with variants of this gene so far, but VASN seems to be a potential biomarker for nephropathies and tumorigenesis. Its interactions with the TGF-β and Notch1 pathways offer the most serious assumptions regarding VASN functions. In this review, we will describe current knowledge about this glycoprotein and discuss its implication in various organ pathophysiology.
Collapse
Affiliation(s)
- Anne-Laure Bonnet
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, University Paris Descartes and Life Imaging Platform (PIV), Montrouge, France.,Department of Odontology, University Hospitals Charles Foix, PNVS, and Henri Mondor, AP-HP, Paris, France
| | - Catherine Chaussain
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, University Paris Descartes and Life Imaging Platform (PIV), Montrouge, France.,Department of Odontology, University Hospitals Charles Foix, PNVS, and Henri Mondor, AP-HP, Paris, France
| | - Isabelle Broutin
- Laboratoire de Cristallographie et RMN Biologiques (UMR 8015, CNRS), Pharmacy Faculty, University Paris Descartes, USPC, Paris, France
| | - Gaël Y Rochefort
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, University Paris Descartes and Life Imaging Platform (PIV), Montrouge, France
| | - Heinrich Schrewe
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Céline Gaucher
- EA 2496 Orofacial Pathologies, Imaging and Biotherapies, Dental School Faculty, University Paris Descartes and Life Imaging Platform (PIV), Montrouge, France.,Department of Odontology, University Hospitals Charles Foix, PNVS, and Henri Mondor, AP-HP, Paris, France
| |
Collapse
|