1
|
Asurappulige HSH, Ladomery MR, Ruth Morse H. IL-6 knockdown in a model of the human bone marrow, abrogates DNA damage induction in bystander cells post-chemotherapy induced cytokine release syndrome. Transl Oncol 2024; 46:102030. [PMID: 38870677 PMCID: PMC11222933 DOI: 10.1016/j.tranon.2024.102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/08/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024] Open
Abstract
Following infection or exposure to therapeutic agents, an aggressive immune response may result, termed cytokine storm (CS) or cytokine release syndrome. Here the innate immune system becomes uncontrolled, leading to serious consequences including possible death. Patients surviving CS are at greater risk for de novo tumorigenesis, but it is unclear if any specific cytokines are directly responsible for this outcome. De novo tumorigenesis has been observed in donated cells exposed to CS following haematopoietic stem cell transplant (HSCT). Modelling HSCT, we firstly demonstrated the release of CS levels from the HS-5 human bone marrow stromal cell line, post-exposure to chemotherapy. We then exposed the TK6 lymphoblast cell line to healthy and storm doses of IL-6 and measured increased genotoxicity via the micronucleus assay. During HSCT, haematopoietic cells are exposed to a complex mix of cytokines, so to determine if IL-6 was integral in a chemotherapy-induced bystander effect, we attempted to inhibit IL-6 from HS-5 cells using resatorvid or siRNA, treated with chlorambucil or mitoxantrone, and then co-cultured with bystander TK6 cells. Whilst resatorvid did not reduce IL-6 and did not reduce micronuclei in the bystander TK6 cells, siRNA inhibition reduced IL-6 to healthy in vivo levels, and micronuclei aligned with untreated controls. Our data suggests that exposure to high IL-6 (in the absence of inflammatory cells) has potential to induce genetic damage and may contribute to de novo tumorigenesis post-CS. We suggest that for individuals with a pro-inflammatory profile, anti-IL-6 therapy may be an appropriate intervention to prevent complications post-CS.
Collapse
Affiliation(s)
- Harshini S H Asurappulige
- Centre for Research in Biosciences, College of Health, Science and Society, University of the West of England, Bristol, BS16 1QY, UK
| | - Michael R Ladomery
- Centre for Research in Biosciences, College of Health, Science and Society, University of the West of England, Bristol, BS16 1QY, UK
| | - H Ruth Morse
- Centre for Research in Biosciences, College of Health, Science and Society, University of the West of England, Bristol, BS16 1QY, UK.
| |
Collapse
|
2
|
Kunrath MF, Giraldo-Osorno PM, Mendes K, Gomes ATPC, Rosa N, Barros M, Dahlin C. Unveiling the consequences of early human saliva contamination on membranes for guided bone regeneration. J Periodontal Res 2024. [PMID: 38644743 DOI: 10.1111/jre.13266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/28/2024] [Accepted: 03/29/2024] [Indexed: 04/23/2024]
Abstract
AIMS GBR membranes have various surface properties designed to elicit positive responses in regenerative clinical procedures; dental clinicians attempt to employ techniques to prevent the direct interaction of contaminated oral fluids with these biomaterials. However, saliva is uninterruptedly exhibited in oral surgical procedures applying GBR membranes, suggesting a persistent interaction with biomaterials and the surrounding oral tissues. This fundamental study aimed to investigate potential alterations in the physical, chemical, and key biological properties of membranes for guided bone regeneration (GBR) caused by isolated early interaction with human saliva. METHODS A reproducible step-by-step protocol for collecting and interacting human saliva with membranes was developed. Subsequently, membranes were evaluated for their physicochemical properties, protein quantification, DNA, and 16S rRNA levels viability of two different cell lines at 1 and 7 days, and ALP activity. Non-interacted membranes and pure saliva of donors were applied as controls. RESULTS Qualitative morphological alterations were noticed; DNA extraction and 16S quantification revealed significantly higher values. Furthermore, the viability of HGF-1 and MC3T3-E1 cells was significantly (p < .05) reduced following saliva interaction with biodegradable membranes. Saliva contamination did not prejudice PTFE membranes significantly in any biological assay. CONCLUSIONS These outcomes demonstrated a susceptible response of biodegradable membranes to isolated early human saliva interaction, suggesting impairment of structural morphology, reduced viability to HGF-1 and MC3T3-E1, and higher absorption/adherence of DNA/16S rRNA. As a result, clinical oral procedures may need corresponding refinements.
Collapse
Affiliation(s)
- Marcel F Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa, Viseu, Portugal
- Dentistry Department, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Paula Milena Giraldo-Osorno
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| | - Karina Mendes
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa, Viseu, Portugal
| | - Ana T P C Gomes
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa, Viseu, Portugal
| | - Nuno Rosa
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa, Viseu, Portugal
| | - Marlene Barros
- Center for Interdisciplinary Research in Health (CIIS), Faculty of Dental Medicine (FMD), Universidade Católica Portuguesa, Viseu, Portugal
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Göteborg, Sweden
| |
Collapse
|
3
|
Panahipour L, Botta S, Abbasabadi AO, Afradi Z, Gruber R. Enamel Matrix Derivative Suppresses Chemokine Expression in Oral Epithelial Cells. Int J Mol Sci 2023; 24:13991. [PMID: 37762294 PMCID: PMC10530986 DOI: 10.3390/ijms241813991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/29/2023] Open
Abstract
Epithelial cells in periodontitis patients increasingly express chemokines, suggesting their active involvement in the inflammatory process. Enamel matrix derivative (EMD) is an extract of porcine fetal tooth germs clinically applied to support the regrowth of periodontal tissues. Periodontal regeneration might benefit from the potential anti-inflammatory activity of EMD for epithelial cells. Our aim was, therefore, to set up a bioassay where chemokine expression is initiated in the HSC2 oral squamous carcinoma cell line and then test EMD for its capacity to lower the inflammatory response. To establish the bioassay, HSC2 cells being exposed to TNFα and LPS from E. coli (Escherichia coli) or P. gingivalis (Porphyromonas gingivalis) were subjected to RNAseq. Here, TNFα but not LPS caused a robust increase of chemokines, including CXCL1, CXCL2, CXCL8, CCL5, and CCL20 in HSC2 cells. Polymerase chain reaction confirmed the increased expression of the respective chemokines in cells exposed to TNFα and IL-1β. Under these conditions, EMD reduced the expression of all chemokines at the transcriptional level and CXCL8 by immunoassay. The TGF-β receptor type I kinase-inhibitor SB431542 reversed the anti-inflammatory activity. Moreover, EMD-activated TGF-β-canonical signaling was visualized by phosphorylation of smad3 and nuclear translocation of smad2/3 in HSC2 cells and blocked by SB431542. This observation was confirmed with primary oral epithelial cells where EMD significantly lowered the SB431542-dependent expression of CXCL8. In summary, our findings suggest that TGF-β signaling mediates the effects of EMD to lower the forced expression of chemokines in oral epithelial cells.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
| | - Sara Botta
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
| | - Azarakhsh Oladzad Abbasabadi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
| | - Zohreh Afradi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (S.B.); (A.O.A.); (Z.A.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
4
|
Proof-of-Principle Study Suggesting Potential Anti-Inflammatory Activity of Butyrate and Propionate in Periodontal Cells. Int J Mol Sci 2022; 23:ijms231911006. [PMID: 36232340 PMCID: PMC9570314 DOI: 10.3390/ijms231911006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Short-chain fatty acids (SCFAs) are potent immune modulators present in the gingival crevicular fluid. It is therefore likely that SCFAs exert a role in periodontal health and disease. To better understand how SCFAs can module inflammation, we screened acetic acid, propionic acid, and butyric acid for their potential ability to lower the inflammatory response of macrophages, gingival fibroblasts, and oral epithelial cells in vitro. To this end, RAW 264.7 and primary macrophages were exposed to LPSs from Porphyromonas gingivalis (P. gingivalis) with and without the SCFAs. Moreover, gingival fibroblasts and HSC2 oral epithelial cells were exposed to IL1β and TNFα with and without the SCFAs. We report here that butyrate was effective in reducing the lipopolysaccharide (LPS)-induced expression of IL6 and chemokine (C-X-C motif) ligand 2 (CXCL2) in the RAW 264.7 and primary macrophages. Butyrate also reduced the IL1β and TNFα-induced expression of IL8, chemokine (C-X-C motif) ligand 1 (CXCL1), and CXCL2 in gingival fibroblasts. Likewise, butyrate lowered the induced expression of CXCL1 and CXCL2, but not IL8, in HSC2 cells. Butyrate further caused a reduction of p65 nuclear translocation in RAW 264.7 macrophages, gingival fibroblasts, and HSC2 cells. Propionate and acetate partially lowered the inflammatory response in vitro but did not reach the level of significance. These findings suggest that not only macrophages, but also gingival fibroblasts and oral epithelial cells are susceptive to the anti-inflammatory activity of butyrate.
Collapse
|
5
|
Panahipour L, Sordi MB, Kargarpour Z, Gruber R. TGF-β Signalling Mediates the Anti-Inflammatory Activity of Enamel Matrix Derivative In Vitro. Int J Mol Sci 2022; 23:9778. [PMID: 36077174 PMCID: PMC9456059 DOI: 10.3390/ijms23179778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Enamel matrix derivative (EMD) prepared from extracted porcine fetal tooth material can support the regrow of periodontal tissues. Previous findings suggest that EMD has anti-inflammatory properties and TGF-β activity in vitro. However, the anti-inflammatory activity of EMD is mediated via TGF-β has not been considered. To this aim, we first established a bioassay to confirm the anti-inflammatory activity of EMD. The bioassay was based on the RAW 264.7 macrophage cell line and proven with primary macrophages where EMD significantly reduced the forced expression of IL-6. We then confirmed the presence of TGF-β1 in EMD by immunoassay and by provoking the Smad2/3 nuclear translocation in RAW 264.7 macrophages. Next, we took advantage of the TGF-β receptor type I kinase-inhibitor SB431542 to block the respective signalling pathway. SB431542 reversed the anti-inflammatory activity of EMD and TGF-β in a bioassay when IL-6 and CXCL2 expression was driven by the LPS stimulation of RAW 264.7 macrophages. This central observation was supported by showing that SB431542 reversed the anti-inflammatory activity of EMD using IL-1β and TNF-α-stimulated ST2 bone marrow stromal cells. Together, these findings implicate that the TGF-β activity mediates at least part of the anti-inflammatory activity of EMD in vitro.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Mariane Beatriz Sordi
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Zahra Kargarpour
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1200 Vienna, Austria
| |
Collapse
|
6
|
Kunrath MF, Correia A, Teixeira ER, Hubler R, Dahlin C. Superhydrophilic Nanotextured Surfaces for Dental Implants: Influence of Early Saliva Contamination and Wet Storage. NANOMATERIALS 2022; 12:nano12152603. [PMID: 35957034 PMCID: PMC9370139 DOI: 10.3390/nano12152603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022]
Abstract
Hydrophilic and nanotextured surfaces for dental implants have been reported as relevant properties for early osseointegration. However, these surface characteristics are quite sensitive to oral interactions. Therefore, this pilot study aimed to investigate the superficial alterations caused on hydrophilic nanotubular surfaces after early human saliva interaction. Titanium disks were treated using an anodization protocol followed by reactive plasma application in order to achieve nanotopography and hydrophilicity, additionally; surfaces were stored in normal atmospheric oxygen or wet conditioning. Following, samples were interacted with saliva for 10 min and analyzed regarding physical–chemical properties and cellular viability. Saliva interaction did not show any significant influence on morphological characteristics, roughness measurements and chemical composition; however, hydrophilicity was statistically altered compromising this feature when the samples were stored in common air. Cellular viability tested with pre-osteoblasts cell line (MC3T3-E1) reduced significantly at 48 h on the samples without wet storage after saliva contamination. The applied wet-storage methodology appears to be effective in maintaining properties such as hydrophilicity during saliva interaction. In conclusion, saliva contamination might impair important properties of hydrophilic nanotubular surfaces when not stored in wet conditions, suggesting the need of saliva-controlled sites for oral application of hydrophilic surfaces and/or the use of modified-package methods associated with their wet storage.
Collapse
Affiliation(s)
- Marcel F. Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30 Göteborg, Sweden
- Department of Dentistry, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil;
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil;
- Correspondence: (M.F.K.); (C.D.); Tel.: +46-0722063757 (M.F.K.)
| | - André Correia
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Centre for Interdisciplinary Research in Health, 3504-505 Viseu, Portugal;
| | - Eduardo R. Teixeira
- Department of Dentistry, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil;
| | - Roberto Hubler
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil;
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30 Göteborg, Sweden
- Correspondence: (M.F.K.); (C.D.); Tel.: +46-0722063757 (M.F.K.)
| |
Collapse
|
7
|
Zhang Y, Xu Y, Jing X, Lu W, Zhang F, Qin C. Moscatilin suppresses the inflammation from macrophages and T cells. Open Med (Wars) 2022; 17:756-767. [PMID: 35509689 PMCID: PMC9008319 DOI: 10.1515/med-2022-0456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/06/2022] [Accepted: 02/18/2022] [Indexed: 11/15/2022] Open
Abstract
In this study, we aim to investigate moscatilin in alleviating symptoms of autoimmune liver disease (ALD) in a concanavalin A (ConA)-induced liver injury mouse model and elucidate the underlying mechanisms. ALD mouse models were constructed by intravenous injection of ConA (20 mg/kg) and the serum level of alanine aminotransferase (ALT) was measured using an enzyme-linked immunosorbent assay. Moscatilin in various doses was administered for two days starting from a day before the ConA injection. We showed that moscatilin dose-dependently decreased ALT levels in liver tissue of ALD mouse models. Ifng and Tnfa also showed significant downregulation in liver tissues. Macrophages only showed significant Tnfa downregulation and CD4+ T cells only showed significant Ifng downregulation at high moscatilin doses. In vivo administration of moscatilin induced interleukin-37 upregulation in hepatic tissues. In vitro, moscatilin also induced IL-37 upregulation in hepatic stellate cell line JS-1 rather than immune cells represented by RAW264.7 and CTLL-2 cell lines, suggesting that the hepatic stellate cell is majorly responsive to moscatilin treatment in terms of interleukin (IL)-37 upregulation. Our data indicate that moscatilin could alleviate liver injury in ConA-induced ALD mouse models through anti-inflammatory activities, warranting further development of moscatilin as a new drug in treating ALD.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Hepatobiliary Surgery, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Yugang Xu
- Department of General Surgery, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Xiujie Jing
- Department of Pediatrics, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Wenkui Lu
- Department of General Surgery, Dongping People's Hospital, Dongping 271500, China
| | - Fusen Zhang
- Department of Critical Care Unit, Taian City Central Hospital, Taian 271000, Shandong, China
| | - Chengkun Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, No. 324 Jingwuwei Road No.7, Jinan 250021, Shandong, China
| |
Collapse
|
8
|
Enamel Matrix Derivative Decreases Pyroptosis-Related Genes in Macrophages. Int J Mol Sci 2022; 23:ijms23095078. [PMID: 35563469 PMCID: PMC9099857 DOI: 10.3390/ijms23095078] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Pyroptosis is a caspase-dependent catabolic process relevant to periodontal disorders for which inflammation is central to the pathophysiology of the disease. Although enamel matrix derivative (EMD) has been applied to support periodontal regeneration, its capacity to modulate the expression of pyroptosis-related genes remains unknown. Considering EMD has anti-inflammatory properties and pyroptosis is linked to the activation of the inflammasome in chronic periodontitis, the question arises whether EMD could reduce pyroptosis signalling. Methods: To answer this question, primary macrophages obtained from murine bone marrow and RAW 264.7 macrophages were primed with EMD before being challenged by lipopolysaccharide (LPS). Cells were then analysed for pyroptosis-signalling components by gene expression analyses, interleukin-1β (IL-1β) immunoassay, and the detection of caspase-1 (CAS1). The release of mitochondrial reactive oxygen species (ROS) was also detected. Results: We report here that EMD, like the inflammasome (NLRP3) and CAS1 specific inhibitors—MCC950 and Ac-YVAD-cmk, respectively—lowered the LPS-induced expression of NLRP3 in primary macrophages (EMD: p = 0.0232; MCC950: p = 0.0426; Ac-YVAD-cmk: p = 0.0317). EMD further reduced the LPS-induced expression of NLRP3 in RAW 264.7 cells (p = 0.0043). There was also a reduction in CAS1 and IL-1β in RAW 264.7 macrophages on the transcriptional level (p = 0.0598; p = 0.0283; respectively), in IL-1β protein release (p = 0.0313), and CAS1 activity. Consistently, EMD, like MCC950 and Ac-YVAD-cmk, diminished the ROS release in activated RAW 264.7 cells. In ST2 murine mesenchymal cells, EMD could not be tested because LPS, saliva, and IL-1β + TNF-α failed to provoke pyroptosis signalling. Conclusion: These findings suggest that EMD is capable of dampening the expression of pyroptosis-related genes in macrophages.
Collapse
|
9
|
Metcalfe S, Anselmi N, Escobar A, Visser MB, Kay JG. Innate Phagocyte Polarization in the Oral Cavity. Front Immunol 2022; 12:768479. [PMID: 35069541 PMCID: PMC8770816 DOI: 10.3389/fimmu.2021.768479] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
The oral cavity is a complex environment constantly exposed to antigens from food and the oral microbiota. Innate immune cells play an essential role in maintaining health and homeostasis in the oral environment. However, these cells also play a significant role in disease progression. This review will focus on two innate phagocytes in the oral cavity: macrophages and neutrophils, and examine their roles during homeostasis and disease development, with a focus on periodontal disease and cancer. Macrophages have a well-known ability to polarize and be activated towards a variety of phenotypes. Several studies have found that macrophages’ polarization changes can play an essential role in maintaining health in the oral cavity and contribute to disease. Recent data also finds that neutrophils display phenotypic heterogeneity in the oral cavity. In both cases, we focus on what is known about how these cellular changes alter these immune cells’ interactions with the oral microbiota, including how such changes can lead to worsening, rather than improving, disease states.
Collapse
Affiliation(s)
- Sarah Metcalfe
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| | - Natalie Anselmi
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| | - Alejandro Escobar
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Michelle B Visser
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| | - Jason G Kay
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
10
|
Kunrath MF, Dahlin C. The Impact of Early Saliva Interaction on Dental Implants and Biomaterials for Oral Regeneration: An Overview. Int J Mol Sci 2022; 23:2024. [PMID: 35216139 PMCID: PMC8875286 DOI: 10.3390/ijms23042024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
The presence of saliva in the oral environment is relevant for several essential health processes. However, the noncontrolled early saliva interaction with biomaterials manufactured for oral rehabilitation may generate alterations in the superficial properties causing negative biological outcomes. Therefore, the present review aimed to provide a compilation of all possible physical-chemical-biological changes caused by the early saliva interaction in dental implants and materials for oral regeneration. Dental implants, bone substitutes and membranes in dentistry possess different properties focused on improving the healing process when in contact with oral tissues. The early saliva interaction was shown to impair some positive features present in biomaterials related to quick cellular adhesion and proliferation, such as surface hydrophilicity, cellular viability and antibacterial properties. Moreover, biomaterials that interacted with contaminated saliva containing specific bacteria demonstrated favorable conditions for increased bacterial metabolism. Additionally, the quantity of investigations associating biomaterials with early saliva interaction is still scarce in the current literature and requires clarification to prevent clinical failures. Therefore, clinically, controlling saliva exposure to sites involving the application of biomaterials must be prioritized in order to reduce impairment in important biomaterial properties developed for rapid healing.
Collapse
Affiliation(s)
- Marcel Ferreira Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, P.O. Box 412, SE 405 30 Goteborg, Sweden;
- Department of Dentistry, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), P.O. Box 6681, Porto Alegre 90619-900, RS, Brazil
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, P.O. Box 412, SE 405 30 Goteborg, Sweden;
| |
Collapse
|
11
|
Roy A, Ben Lagha A, Gonçalves R, Grenier D. Effects of Saliva From Periodontally Healthy and Diseased Subjects on Barrier Function and the Inflammatory Response in in vitro Models of the Oral Epithelium. FRONTIERS IN ORAL HEALTH 2022; 2:815728. [PMID: 35048079 PMCID: PMC8757859 DOI: 10.3389/froh.2021.815728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/10/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Periodontitis is a multifactorial, bacteria-mediated chronic inflammatory disease that results in the progressive destruction of the tooth-supporting tissues. It is well-known that saliva from subjects suffering from this disease generally contains higher levels of pro-inflammatory mediators, matrix metalloproteinases (MMP), and bacteria-derived toxic products. The aim of this study was to investigate and compare the effects of saliva from periodontally healthy and diseased subjects on the barrier function and inflammatory response in in vitro models of the oral epithelium. Methods: Unstimulated saliva samples from two groups of subjects, one with a healthy periodontium (n = 12) and one with severe generalized periodontitis (n = 11), were filter-sterilized. All the saliva samples were analyzed using an immunological multiplex assay to determine the levels of various cytokines and MMPs relevant to periodontitis. The impact of saliva on epithelial barrier integrity was assessed by monitoring transepithelial electrical resistance (TER) in an oral epithelium model using the B11 keratinocyte cell line. GMSM-K oral epithelial cells were treated with saliva from both groups to determine their ability to induce the secretion of interleukin-6 (IL-6) and interleukin-8 (IL-8), as determined by an enzyme-linked immunosorbent assay (ELISA). Results: Saliva from the periodontitis subjects contained significantly higher concentrations of matrix metalloproteinase-8 (MMP-8), matrix metalloproteinase-9 (MMP-9), IL-8, and C-X-C motif chemokine ligand 1 (CXCL1) compared to saliva from the healthy subjects. Saliva from the healthy and periodontitis subjects affected cytokine secretion and TER in a similar manner. More specifically, saliva from both groups increased TER and induced IL-6 and IL-8 secretion in the in vitro oral epithelium models used. Conclusion: Independently of the presence or absence of periodontitis, saliva can increase the relative TER and the secretion of IL-6 and IL-8 in in vitro models of the oral epithelium.
Collapse
Affiliation(s)
- Antoine Roy
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Amel Ben Lagha
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Reginaldo Gonçalves
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| | - Daniel Grenier
- Oral Ecology Research Group, Faculty of Dentistry, Université Laval, Quebec City, QC, Canada
| |
Collapse
|
12
|
Zhang Y, Ma L, Lu E, Huang W. Atorvastatin Upregulates microRNA-186 and Inhibits the TLR4-Mediated MAPKs/NF-κB Pathway to Relieve Steroid-Induced Avascular Necrosis of the Femoral Head. Front Pharmacol 2021; 12:583975. [PMID: 33995003 PMCID: PMC8115218 DOI: 10.3389/fphar.2021.583975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
Steroid-induced avascular necrosis of the femoral head (SANFH) is caused by the death of active components of the femoral head owing to hormone overdoses. The use of lipid-lowering drugs to prevent SANFH in animals inspired us to identify the mechanisms involving Atorvastatin (Ato) in SANFH. However, it is still not well understood how and to what extent Ato affects SANFH. This study aimed to figure out the efficacy of Ato in SANFH and the underlying molecular mechanisms. After establishment of the SANFH model, histological evaluation, lipid metabolism, inflammatory cytokines, oxidative stress, apoptosis, and autophagy of the femoral head were evaluated. The differentially expressed microRNAs (miRs) after Ato treatment were screened out using microarray analysis. The downstream gene and pathway of miR-186 were predicted and their involvement in SANFH rats was analyzed. OB-6 cells were selected to simulate SANFH in vitro. Cell viability, cell damage, inflammation responses, apoptosis, and autophagy were assessed. Ato alleviated SANFH, inhibited apoptosis, and promoted autophagy. miR-186 was significantly upregulated after Ato treatment. miR-186 targeted TLR4 and inactivated the MAPKs/NF-κB pathway. Inhibition of miR-186 reversed the protection of Ato on SANFH rats, while inhibition of TLR4 restored the protective effect of Ato. Ato reduced apoptosis and promoted autophagy of OB-6 cells by upregulating miR-186 and inhibiting the TLR4/MAPKs/NF-κB pathway. In conclusion, Ato reduced apoptosis and promoted autophagy, thus alleviating SANFH via miR-186 and the TLR4-mediated MAPKs/NF-κB pathway.
Collapse
Affiliation(s)
- Yusong Zhang
- Department of Orthopedics, Xinhui People's Hospital of Southern Medical University, Jiangmen, China.,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Limin Ma
- Department of Orthopedics, Xinhui People's Hospital of Southern Medical University, Jiangmen, China.,Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Erhai Lu
- Department of Orthopedics, Xinhui People's Hospital of Southern Medical University, Jiangmen, China
| | - Wenhua Huang
- Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, Guangdong Provincial Key Laboratory of Medical Biomechanics, National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,Guangdong Medical Innovation Platform for Translation of 3D Printing Application, Southern Medical University, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.,Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
13
|
Nasirzade J, Kargarpour Z, Panahipour L, Schwarz F, Gruber R. Cleaning Teeth Reduces the Inflammatory Response of Macrophages to Acid Dentine Lysate. Int J Mol Sci 2020; 21:ijms21239207. [PMID: 33276685 PMCID: PMC7730611 DOI: 10.3390/ijms21239207] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Particulate autogenous tooth roots are used for alveolar bone augmentation surgery; however, dental plaque may provoke an inflammatory response that may counteract the desired graft consolidation process. Traditional mechanical cleaning of extracted teeth may be of support to lower a possible inflammatory response of the autograft. To test this assumption, extracted porcine teeth were left either uncleaned or underwent mechanical cleaning with a toothbrush and toothpaste before being fragmented and subjected to acid lysis, termed as unclean acid dentine lysate (ucADL) and clean acid dentine lysate (cADL), respectively. The inflammatory responses of murine macrophage RAW 264.7 cells being exposed to the respective acid dentine lysates were evaluated at the level of inflammatory gene expression and IL6 immunoassays. We report here that acid lysates obtained from uncleaned teeth provoked a robust increase in IL1β, IL6, and COX2 in RAW 264.7 cells. The mechanical removal of dental plaque significantly reduced the inflammatory response. Consistently, Limulus tests revealed that tooth cleaning lowers the presence of endotoxins in dentine lysates. To further prove the involvement of endotoxins, a toll-like receptor 4 (TLR4) inhibitor TAK242 was introduced. TAK242 abolished the inflammatory response provoked by acid lysates obtained from uncleaned teeth in RAW 264.7 cells. Moreover, nuclear translocation and phosphorylation of the TLR4 downstream NFκB-p65 were attenuated at the presence of cleaned versus uncleaned dentine lysates. Taken together, our data support the importance of dental plaque removal of teeth being extracted for alveolar bone augmentation surgery.
Collapse
Affiliation(s)
- Jila Nasirzade
- Department of Oral Biology, Medical University of Vienna, 1090 Vienna, Austria; (J.N.); (Z.K.); (L.P.)
| | - Zahra Kargarpour
- Department of Oral Biology, Medical University of Vienna, 1090 Vienna, Austria; (J.N.); (Z.K.); (L.P.)
| | - Layla Panahipour
- Department of Oral Biology, Medical University of Vienna, 1090 Vienna, Austria; (J.N.); (Z.K.); (L.P.)
| | - Frank Schwarz
- Department of Oral Surgery and Implantology, Johann Wolfgang Goethe-University, Carolinum, 60596 Frankfurt, Germany;
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, 1090 Vienna, Austria; (J.N.); (Z.K.); (L.P.)
- Department of Periodontology, School of Dental Medicine, University of Bern, 3012 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Correspondence: ; Tel.: +43-1-40070-2660
| |
Collapse
|
14
|
Talebian R, Panahipour L, Gruber R. Ursodeoxycholic acid attenuates the expression of proinflammatory cytokines in periodontal cells. J Periodontol 2020; 91:1098-1104. [PMID: 31960968 PMCID: PMC7496100 DOI: 10.1002/jper.19-0013] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 11/25/2019] [Accepted: 12/21/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Ursodeoxycholic acid (UDCA) is one of the first-line therapeutic medications used in treatment of cholestatic liver disease. Considering that periodontitis is epidemiologically linked to liver diseases, the question arises weather UDCA holds anti-inflammatory properties on periodontal health. Herein, we provide information that support anti-inflammatory effects of UDCA on three different periodontium-related cell types. METHODS Gingival fibroblasts and the oral human squamous carcinoma cell line HSC-2 were exposed to interleukin (IL)1β and tumor necrosis factor (TNF)α with and without UDCA. Murine RAW 264.7 macrophages were incubated with sterile-filtered human saliva also in the presence of UDCA. The expression of inflammatory cytokines was measured by reverse transcription-polymerase chain reaction. Immunoassay was applied to detect the production of IL6. Immunostaining was performed for the p65 subunit to further support the anti-inflammatory role of UDCA. RESULTS We report here that UDCA significantly reduced the IL1β and TNFα-induced expression of IL1, IL6, and IL8 in gingival fibroblasts and the HSC-2 cell line. In RAW 264.7 macrophages, UDCA attenuated the expression of IL1α, IL1β, and IL6 that was increased by saliva. Immunoassay confirmed the capacity of UDCA to reduce inflammation-induced production of IL6 in gingival fibroblasts, HSC-2 and RAW 264.7 cells. Immunostaining revealed the blocking of nuclear translocation of p65 in gingival fibroblasts. CONCLUSIONS Taken together, UDCA can attenuate the provoked expression of inflammatory cytokines in oral fibroblasts, oral human squamous carcinoma cells and macrophages in vitro. These data support the hypothesis that patients with cholestatic liver disease might benefit from UDCA with respect to periodontal health.
Collapse
Affiliation(s)
- Reza Talebian
- Department of Oral BiologyUniversity Clinic of Dentistry, Medical University of ViennaViennaAustria
- Experimental Research CenterMedical FacultyTehran University of Medical SciencesTehranIran
| | - Layla Panahipour
- Department of Oral BiologyUniversity Clinic of Dentistry, Medical University of ViennaViennaAustria
| | - Reinhard Gruber
- Department of Oral BiologyUniversity Clinic of Dentistry, Medical University of ViennaViennaAustria
- Department of PeriodontologySchool of Dental MedicineUniversity of BernBernSwitzerland
| |
Collapse
|
15
|
Panahipour L, Kochergina E, Laggner M, Zimmermann M, Mildner M, Ankersmit HJ, Gruber R. Role for Lipids Secreted by Irradiated Peripheral Blood Mononuclear Cells in Inflammatory Resolution in Vitro. Int J Mol Sci 2020; 21:ijms21134694. [PMID: 32630157 PMCID: PMC7370068 DOI: 10.3390/ijms21134694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 06/24/2020] [Accepted: 06/28/2020] [Indexed: 12/18/2022] Open
Abstract
Periodontal inflammation is associated with dying cells that potentially release metabolites helping to promote inflammatory resolution. We had shown earlier that the secretome of irradiated, dying peripheral blood mononuclear cells support in vitro angiogenesis. However, the ability of the secretome to promote inflammatory resolution remains unknown. Here, we determined the expression changes of inflammatory cytokines in murine bone marrow macrophages, RAW264.7 cells, and gingival fibroblasts exposed to the secretome obtained from γ-irradiated peripheral blood mononuclear cells in vitro by RT-PCR and immunoassays. Nuclear translocation of p65 was detected by immunofluorescence staining. Phosphorylation of p65 and degradation of IκB was determined by Western blot. The secretome of irradiated peripheral blood mononuclear cells significantly decreased the expression of IL1 and IL6 in primary macrophages and RAW264.7 cells when exposed to LPS or saliva, and of IL1, IL6, and IL8 in gingival fibroblasts when exposed to IL-1β and TNFα. These changes were associated with decreased phosphorylation and nuclear translocation of p65 but not degradation of IκB in macrophages. We also show that the lipid fraction of the secretome lowered the inflammatory response of macrophages exposed to the inflammatory cues. These results demonstrate that the secretome of irradiated peripheral blood mononuclear cells can lower an in vitro simulated inflammatory response, supporting the overall concept that the secretome of dying cells promotes inflammatory resolution.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (E.K.)
| | - Evgeniya Kochergina
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (E.K.)
| | - Maria Laggner
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Währingergürtel 18-20, 1090 Vienna, Austria; (M.L.); (H.J.A.)
- Division of Thoracic Surgery, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria
| | - Matthias Zimmermann
- Department of Oral and Maxillofacial Surgery, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria;
| | - Michael Mildner
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria;
| | - Hendrik J. Ankersmit
- Laboratory for Cardiac and Thoracic Diagnosis, Regeneration and Applied Immunology, Währingergürtel 18-20, 1090 Vienna, Austria; (M.L.); (H.J.A.)
- Division of Thoracic Surgery, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; (L.P.); (E.K.)
- Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
- Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1200 Vienna, Austria
- Correspondence:
| |
Collapse
|
16
|
Panahipour L, Tabatabaei AA, Gruber R. Hypoallergenic infant formula lacks transforming growth factor beta activity and has a lower anti-inflammatory activity than regular infant formula. J Dairy Sci 2020; 103:6771-6781. [PMID: 32505409 DOI: 10.3168/jds.2019-18067] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/27/2020] [Indexed: 01/02/2023]
Abstract
Hypoallergenic formulas are recommended for infants who are not breastfed and cannot tolerate cow milk formulas due to allergy. These formulas are hydrolyzed to break down larger protein chains into shorter, easy-to-digest, and potentially less allergenic proteins. Hydrolysis, however, possibly occurs at the expense of the transforming growth factor beta (TGF-β) and anti-inflammatory activity that is inherent in regular formula. Our objective was to determine the TGF-β and the anti-inflammatory activity of commercially available hypoallergenic and regular formulas. Human gingival fibroblasts were incubated with reconstituted formulas followed by detection of TGF-β target genes and activation of Smad2/3 signaling. Gingival fibroblasts and the oral squamous cell carcinoma cell line HSC-2 were also exposed to formulas before adding interleukin (IL)1β and tumor necrosis factor (TNF)α to provoke expression of pro-inflammatory cytokines. For murine bone marrow-derived macrophages, pro-inflammatory cytokine expression was stimulated with saliva. Changes in p65 nuclear translocation and phosphorylation of smad3 and p38 were analyzed by immunostaining. Our study demonstrated that regular formula, but not hypoallergenic formula, enhanced the expression of TGF-β target genes IL11, PRG4, and NOX4 in gingival fibroblasts. Hypoallergenic formulas also failed to initiate nuclear translocation of Smad2/3 and phosphorylation of Smad3. Moreover, regular formulas were more potent than hypoallergenic formulas in reducing the expression of pro-inflammatory cytokines in gingival fibroblasts, HSC-2 epithelial cells, and murine bone marrow macrophages. Hypoallergenic and regular formulas had a similar capacity to reduce p65 nuclear translocation and phosphorylation of p38 in fibroblasts. These findings suggest that hypoallergenic formulas lack in vitro TGF-β activity and have a lower anti-inflammatory activity compared with regular formulas.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | | | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria; Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland; Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1200 Vienna, Austria.
| |
Collapse
|
17
|
Magrin GL, Di Summa F, Strauss FJ, Panahipour L, Mildner M, Magalhães Benfatti CA, Gruber R. Butyrate Decreases ICAM-1 Expression in Human Oral Squamous Cell Carcinoma Cells. Int J Mol Sci 2020; 21:ijms21051679. [PMID: 32121422 PMCID: PMC7084181 DOI: 10.3390/ijms21051679] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/20/2020] [Accepted: 02/27/2020] [Indexed: 12/15/2022] Open
Abstract
Short-chain fatty acids (SCFA) are bacterial metabolites that can be found in periodontal pockets. The expression of adhesion molecules such as intercellular adhesion molecule-1 (ICAM-1) within the epithelium pocket is considered to be a key event for the selective transmigration of leucocytes towards the gingival sulcus. However, the impact of SCFA on ICAM-1 expression by oral epithelial cells remains unclear. We therefore exposed the oral squamous carcinoma cell line HSC-2, primary oral epithelial cells and human gingival fibroblasts to SCFA, namely acetate, propionate and butyrate, and stimulated with known inducers of ICAM-1 such as interleukin-1-beta (IL1β) and tumor necrosis factor-alfa (TNFα). We report here that butyrate but not acetate or propionate significantly suppressed the cytokine-induced ICAM-1 expression in HSC-2 epithelial cells and primary epithelial cells. The G-protein coupled receptor-43 (GPR43/ FFAR2) agonist but not the histone deacetylase inhibitor, trichostatin A, mimicked the butyrate effects. Butyrate also attenuated the nuclear translocation of p65 into the nucleus on HSC-2 cells. The decrease of ICAM-1 was independent of Nrf2/HO-1 signaling and phosphorylation of JNK and p38. Nevertheless, butyrate could not reverse an ongoing cytokine-induced ICAM-1 expression in HSC-2 cells. Overall, these observations suggest that butyrate can attenuate cytokine-induced ICAM-1 expression in cells with epithelial origin.
Collapse
Affiliation(s)
- Gabriel Leonardo Magrin
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna 1090, Austria; (G.L.M.); (F.D.S.); (F.-J.S.); (L.P.)
- Center for Education and Research on Dental Implants (CEPID), Department of Dentistry, School of Dentistry, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima s/n, Florianopolis – SC 88040-900, Brazil;
| | - Francesca Di Summa
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna 1090, Austria; (G.L.M.); (F.D.S.); (F.-J.S.); (L.P.)
| | - Franz-Josef Strauss
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna 1090, Austria; (G.L.M.); (F.D.S.); (F.-J.S.); (L.P.)
- Department of Conservative Dentistry, School of Dentistry, University of Chile, Av. Sergio Livingstone 943, Santiago 7500566, Chile
- Clinic of Reconstructive Dentistry, University of Zurich, 8032 Zurich, Switzerland
| | - Layla Panahipour
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna 1090, Austria; (G.L.M.); (F.D.S.); (F.-J.S.); (L.P.)
| | - Michael Mildner
- Department of Dermatology, Medical University of Vienna, Spitalgasse 23, Vienna 1090, Austria;
| | - Cesar Augusto Magalhães Benfatti
- Center for Education and Research on Dental Implants (CEPID), Department of Dentistry, School of Dentistry, Federal University of Santa Catarina, Campus Reitor João David Ferreira Lima s/n, Florianopolis – SC 88040-900, Brazil;
| | - Reinhard Gruber
- Department of Oral Biology, School of Dentistry, Medical University of Vienna, Sensengasse 2a, Vienna 1090, Austria; (G.L.M.); (F.D.S.); (F.-J.S.); (L.P.)
- Department of Periodontology, University Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
- Correspondence:
| |
Collapse
|
18
|
Talebian R, Hashem O, Gruber R. Taurocholic acid lowers the inflammatory response of gingival fibroblasts, epithelial cells, and macrophages. J Oral Sci 2020; 62:335-339. [DOI: 10.2334/josnusd.19-0342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Reza Talebian
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna
- Experimental Research Center, Medical Faculty, Tehran University of Medical Sciences
| | - Othman Hashem
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna
| | - Reinhard Gruber
- Department of Oral Biology, University Clinic of Dentistry, Medical University of Vienna
- Department of Periodontology, School of Dental Medicine, University of Bern
| |
Collapse
|
19
|
Zuo Y, Whitbeck JC, Haila GJ, Hakim AA, Rothlauf PW, Eisenberg RJ, Cohen GH, Krummenacher C. Saliva enhances infection of gingival fibroblasts by herpes simplex virus 1. PLoS One 2019; 14:e0223299. [PMID: 31581238 PMCID: PMC6776388 DOI: 10.1371/journal.pone.0223299] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 09/19/2019] [Indexed: 02/01/2023] Open
Abstract
Oral herpes is a highly prevalent infection caused by herpes simplex virus 1 (HSV-1). After an initial infection of the oral cavity, HSV-1 remains latent in sensory neurons of the trigeminal ganglia. Episodic reactivation of the virus leads to the formation of mucocutaneous lesions (cold sores), but asymptomatic reactivation accompanied by viral shedding is more frequent and allows virus spread to new hosts. HSV-1 DNA has been detected in many oral tissues. In particular, HSV-1 can be found in periodontal lesions and several studies associated its presence with more severe periodontitis pathologies. Since gingival fibroblasts may become exposed to salivary components in periodontitis lesions, we analyzed the effect of saliva on HSV-1 and -2 infection of these cells. We observed that human gingival fibroblasts can be infected by HSV-1. However, pre-treatment of these cells with saliva extracts from some but not all individuals led to an increased susceptibility to infection. Furthermore, the active saliva could expand HSV-1 tropism to cells that are normally resistant to infection due to the absence of HSV entry receptors. The active factor in saliva was partially purified and comprised high molecular weight complexes of glycoproteins that included secretory Immunoglobulin A. Interestingly, we observed a broad variation in the activity of saliva between donors suggesting that this activity is selectively present in the population. The active saliva factor, has not been isolated, but may lead to the identification of a relevant biomarker for susceptibility to oral herpes. The presence of a salivary factor that enhances HSV-1 infection may influence the risk of oral herpes and/or the severity of associated oral pathologies.
Collapse
Affiliation(s)
- Yi Zuo
- Department of Microbiology, School of Dental Medicine University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - J. Charles Whitbeck
- Department of Microbiology, School of Dental Medicine University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gabriel J. Haila
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, New Jersey, United States of America
| | - Abraham A. Hakim
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
| | - Paul W. Rothlauf
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
| | - Roselyn J. Eisenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gary H. Cohen
- Department of Microbiology, School of Dental Medicine University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Claude Krummenacher
- Department of Biological Sciences, Rowan University, Glassboro, New Jersey, United States of America
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, New Jersey, United States of America
| |
Collapse
|
20
|
Panahipour L, Kochergina E, Kreissl A, Haiden N, Gruber R. Milk modulates macrophage polarization in vitro. Cytokine X 2019; 1:100009. [PMID: 33604549 PMCID: PMC7885867 DOI: 10.1016/j.cytox.2019.100009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 05/17/2019] [Accepted: 05/17/2019] [Indexed: 02/01/2023] Open
Abstract
Objective Milk holds an anti-inflammatory response that is particularly important to protecting infants against necrotizing enterocolitis. Milk might also exert anti-inflammatory effects in adulthood, including the oral cavity where macrophages of the oral mucosal control innate immunity defense. It remains unknown, however, whether milk can modulate the local inflammatory response by affecting the polarization of macrophages. Material and Methods To determine whether pasteurized human milk and pasteurized cow milk can provoke macrophage polarization, murine bone marrow macrophages and RAW264.7 cells were exposed to human saliva or the inflammatory cytokines IL1β and TNFα. Activation of pro-(M1) inflammatory response is indicated by the expression of IL1 and IL8. To determine polarization towards a M2 phenotype, the expression of arginase 1 (ARG1) and chitinase-like 3 (Chil3) was determined by reverse transcriptase PCR and immunoassay. Western blot was done on phosphorylated p38 and JNK. Results Aqueous fractions of human milk and cow milk from different donors, respectively, significantly decreased the inflammatory response of primary macrophages and RAW264.7 cells when exposed to saliva or IL1 and TNFα. Similar to IL4, human milk and cow milk caused a robust expression of ARG1 and Chil3 in primary macrophages. The polarization of macrophages by pasteurized milk occurred independent of the phosphorylation of p38 and JNK. Conclusion These data suggest that pasteurized milk, independent of the origin, can cause the polarization of macrophages from a pro-inflammatory M1 towards a pro-resolving M2 phenotype. Thus, milk might have a protective role for the oral cavity by modulation of the macrophage-based innate immune system.
Collapse
Affiliation(s)
- Layla Panahipour
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Evgeniya Kochergina
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria
| | - Alexandra Kreissl
- Department of Paediatrics and Adolescent Medicine, Division of Neonatology, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria
| | - Nadja Haiden
- Department of Clinical Pharmacology, Medical University of Vienna, Währingergürtel 18-20, 1090 Vienna, Austria
| | - Reinhard Gruber
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090 Vienna, Austria.,Department of Periodontology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland.,Austrian Cluster for Tissue Regeneration, Donaueschingenstraße 13, 1200 Vienna, Austria
| |
Collapse
|
21
|
IL-37 suppresses the sustained hepatic IFN-γ/TNF-α production and T cell-dependent liver injury. Int Immunopharmacol 2019; 69:184-193. [DOI: 10.1016/j.intimp.2019.01.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 01/11/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
|
22
|
Caffeic acid phenethyl ester protects against oxidative stress and dampens inflammation via heme oxygenase 1. Int J Oral Sci 2019; 11:6. [PMID: 30783082 PMCID: PMC6381107 DOI: 10.1038/s41368-018-0039-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/18/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022] Open
Abstract
Periodontal disease is associated with chronic oxidative stress and inflammation. Caffeic acid phenethyl ester (CAPE), which is a potent inducer of heme oxygenase 1 (HO1), is a central active component of propolis, and the application of propolis improves periodontal status in diabetic patients. Here, primary murine macrophages were exposed to CAPE. Target gene expression was assessed by whole-genome microarray, RT-PCR and Western blotting. The antioxidative and anti-inflammatory activities of CAPE were examined by exposure of the cells to hydrogen peroxide, saliva and periodontal pathogens. The involvement of HO1 was investigated with the HO1 inhibitor tin protoporphyrin (SnPP) and knockout mice for Nrf2, which is a transcription factor for detoxifying enzymes. CAPE increased HO1 and other heat shock proteins in murine macrophages. A p38 MAPK inhibitor and Nrf2 knockout attenuated CAPE-induced HO1 expression in macrophages. CAPE exerted strong antioxidative activity. Additionally, CAPE reduced the inflammatory response to saliva and periodontal pathogens. Blocking HO1 decreased the antioxidative activity and attenuated the anti-inflammatory activity of CAPE. In conclusion, CAPE exerted its antioxidative effects through the Nrf2-mediated HO1 pathway and its anti-inflammatory effects through NF-κB inhibition. However, preclinical models evaluating the use of CAPE in periodontal inflammation are necessary in future studies. Propolis, also known as ‘honeybee glue,’ may protect teeth and gums against periodontal disease. In periodontal disease, chronic inflammation and oxidative damage harm gum tissue and lead to tooth loss; propolis has been shown to improve periodontal health for patients with diabetes. Bees make propolis by mixing beeswax, honey, plant resins and their own saliva, and use it to patch honeycomb and prevent growth of microbes in the hive. Reinhard Gruber of the Department of Oral Biology at the Medical University of Vienna and of the Department of Periodontology, University of Bern and co-workers investigated the effects of one of propolis’ active ingredients, caffeic acid phenethyl ester (CAPE), on oxidative stress and inflammation. They found that CAPE reduced oxidative damage and dampened inflammation; further investigation revealed the genetic basis of the beneficial effects, paving the way for future clinical studies. These results may help identify alternative treatments for periodontal disease.
Collapse
|
23
|
Yin Z, Ma T, Lin Y, Lu X, Zhang C, Chen S, Jian Z. IL-6/STAT3 pathway intermediates M1/M2 macrophage polarization during the development of hepatocellular carcinoma. J Cell Biochem 2018; 119:9419-9432. [PMID: 30015355 DOI: 10.1002/jcb.27259] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 06/22/2018] [Indexed: 12/17/2022]
Abstract
Human cancers, including hepatocellular carcinoma (HCC), are characterized by a high degree of drug resistance in chemotherapy. However, the underlying molecular mechanism remains unknown. To the role of interleukin-6 (IL-6)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in the regulation of macrophage polarization, M1-type and M2-type macrophages were separately induced using lipopolysaccharide and interleukin-4 (IL-4), and we found that the IL-6/STAT3 signaling pathway was inhibited in M1-type macrophages but activated in M2-type macrophages. After anti-IL-6-treated macrophages were separately induced by lipopolysaccharide and IL-4, we found that the inhibition of IL-6/STAT3 signaling pathway turned macrophages into M1-type. Co-culture with M1-type macrophages reduced HCC cell viability, proliferation, invasion, migration, drug resistance, but increased apoptosis. Co-culture with M2-type macrophages yielded reciprocal results. The inhibition of IL-6/STAT3 signaling pathway mediated by anti-IL6 was shown to significantly enhance the effects of M1-type macrophages on HCC cells and rescue HCC cells from co-culture with M2-type macrophages. Tumor xenografts of co-cultured HCC cells were established in nude mice and the results showed that the inhibition of IL-6/STAT3 signaling pathway mediated by anti-IL6 was found to reduce tumor formation of HCC cells co-cultured with M1- or M2-type macrophages and lung metastases. The current study reveals a novel mechanism of IL-6/STAT3 signaling pathway in the regulation of macrophage polarization, thus contributing to HCC metastasis and drug resistance in chemotherapy.
Collapse
Affiliation(s)
- Zi Yin
- General Surgery Department, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Tingting Ma
- Gynaecology and Obstetrics Department, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ye Lin
- General Surgery Department, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xin Lu
- General Surgery Department, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chuanzhao Zhang
- General Surgery Department, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Sheng Chen
- General Surgery Department, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zhixiang Jian
- General Surgery Department, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| |
Collapse
|
24
|
Müller HD, Caballé-Serrano J, Lussi A, Gruber R. Inhibitory effect of saliva on osteoclastogenesis in vitro requires toll-like receptor 4 signaling. Clin Oral Investig 2017; 21:2445-2452. [PMID: 28101679 PMCID: PMC5632348 DOI: 10.1007/s00784-016-2041-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 12/21/2016] [Indexed: 01/25/2023]
Abstract
OBJECTIVES Saliva can suppress osteoclastogenesis, but the underlying mechanism has not been discovered yet. Considering that endotoxins suppress osteoclastogenesis in bone marrow cultures and that saliva contains endotoxins, it was reasonable to hypothesize that the impact of saliva on osteoclastogenesis requires toll-like receptor 4 signaling. MATERIAL AND METHODS To test this hypothesis, we blocked toll-like receptor 4 signaling with TAK-242 in the presence of saliva in murine bone marrow cultures. Osteoclastogenesis was evaluated based on gene expression analysis and histochemical staining for tartrate-resistant acid phosphatase. Resorption was performed on dentine. RESULTS We report that TAK-242 reversed the inhibitory effect of fresh sterile saliva on the formation of multinucleated cells that stained positive for tartrate-resistant acid phosphatase. In line with this finding, TAK-242 increased the expression of the osteoclast functional genes cathepsin K, calcitonin receptor, and tartrate-resistant acid phosphatase in the presence of saliva. TAK-242 also supported the expression of NFATc1, the master regulator of osteoclastogenesis, as well as DC-STAMP and Atp6v0d2, both being cell fusion genes. In support of the hypothesis, depletion of saliva from endotoxin partially reversed the inhibitory effect on osteoclastogenesis. Moreover, salivary pellicle on plastic and titanium did not affect osteoclastogenesis. CONCLUSION Inhibition of toll-like receptor 4 signaling revealed that saliva can contribute to innate immunity by preventing hematopoietic progenitors to become osteoclasts. CLINICAL RELEVANCE Saliva can activate pattern recognition receptor signaling through endotoxins and other stress factors, indicating the demand for macrophages rather than for osteoclasts.
Collapse
Affiliation(s)
- Heinz-Dieter Müller
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Jordi Caballé-Serrano
- Department of Oral Surgery and Stomatology, School of Dental Medicine|, University of Bern, Bern, Switzerland
- Department of Oral and Maxillofacial Surgery, School of Dental Medicine, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Adrian Lussi
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland
| | - Reinhard Gruber
- Department of Preventive, Restorative and Pediatric Dentistry, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010, Bern, Switzerland.
- Department of Oral Biology, Medical University of Vienna, Sensengasse 2a, 1090, Vienna, Austria.
| |
Collapse
|
25
|
Li Y, Yao D, Zhang J, Liu B, Zhang L, Feng H, Li B. The Effects of Epidermal Neural Crest Stem Cells on Local Inflammation Microenvironment in the Defected Sciatic Nerve of Rats. Front Mol Neurosci 2017; 10:133. [PMID: 28588447 PMCID: PMC5438963 DOI: 10.3389/fnmol.2017.00133] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 04/20/2017] [Indexed: 12/21/2022] Open
Abstract
Cell-based therapy is a promising strategy for the repair of peripheral nerve injuries (PNIs). epidermal neural crest stems cells (EPI-NCSCs) are thought to be important donor cells for repairing PNI in different animal models. Following PNI, inflammatory response is important to regulate the repair process. However, the effects of EPI-NCSCs on regulation of local inflammation microenviroment have not been investigated extensively. In the present study, these effects were studied by using 10 mm defected sciatic nerve, which was bridged with 15 mm artificial nerve composed of EPI-NCSCs, extracellular matrix (ECM) and poly (lactide-co-glycolide) (PLGA). Then the expression of pro- and anti-inflammatory cytokines, polarization of macrophages, regulation of fibroblasts and shwann cells (SCs) were assessed by western blot, immunohistochemistry, immunofluorescence staining at 1, 3, 7 and 21 days after bridging. The structure and the function of the bridged nerve were determined by observation under light microscope and by examination of right lateral foot retraction time (LFRT), sciatic function index (SFI), gastrocnemius wet weight and electrophysiology at 9 weeks. After bridging with EPI-NCSCs, the expression of anti-inflammatory cytokines (IL-4 and IL-13) was increased, but decreased for pro-inflammatory cytokines (IL-6 and TNF-α) compared to the control bridging, which was consistent with increase of M2 macrophages and decrease of M1 macrophages at 7 days after transplantation. Likewise, myelin-formed SCs were significantly increased, but decreased for the activated fibroblasts in their number at 21 days. The recovery of structure and function of nerve bridged with EPI-NCSCs was significantly superior to that of DMEM. These results indicated that EPI-NCSCs could be able to regulate and provide more suitable inflammation microenvironment for the repair of defected sciatic nerve.
Collapse
Affiliation(s)
- Yue Li
- Department of Neurosurgery, Southwest Hospital/State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical UniversityChongqing, China
| | - Dongdong Yao
- Research Institute of Surgery, Daping Hospital/State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical UniversityChongqing, China.,School of Life Sciences/Key Laboratory of Freshwater Fish Reproduction and Development of Education Ministry, Southwest UniversityChongqing, China
| | - Jieyuan Zhang
- Research Institute of Surgery, Daping Hospital/State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical UniversityChongqing, China
| | - Bin Liu
- School of Life Sciences/Key Laboratory of Freshwater Fish Reproduction and Development of Education Ministry, Southwest UniversityChongqing, China
| | - Lu Zhang
- Children's Hospital of Chongqing Medical University/Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Medical UniversityChongqing, China
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital/State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical UniversityChongqing, China
| | - Bingcang Li
- Research Institute of Surgery, Daping Hospital/State Key Laboratory of Trauma, Burns and Combined Injury, Third Military Medical UniversityChongqing, China
| |
Collapse
|