1
|
Abstract
Schwann cells are components of the peripheral nerve myelin sheath, which supports and nourishes axons. Upon injury of the trigeminal nerve, Schwann cells are activated and cause trigeminal neuralgia by engulfing the myelin sheath and secreting various neurotrophic factors. Further, Schwann cells can repair the damaged nerve and thus alleviate trigeminal neuralgia. Here, we briefly describe the development and activation of Schwann cells after nerve injury. Moreover, we expound on the occurrence, regulation, and treatment of trigeminal neuralgia; further, we point out the current research deficiencies and future research directions.
Collapse
Affiliation(s)
- Jia-Yi Liao
- Stomatology College of Nanchang University, Nanchang, China
| | - Tian-Hua Zhou
- Basic Medical School, Nanchang University, Nanchang, China
| | - Bao-Kang Chen
- First Clinical Medical College of Nanchang University, Nanchang, China
| | - Zeng-Xu Liu
- Department of Anatomy, Basic Medical School, Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Xu L, Jiang H, Feng Y, Cao P, Ke J, Long X. Peripheral and central substance P expression in rat CFA-induced TMJ synovitis pain. Mol Pain 2020; 15:1744806919866340. [PMID: 31322474 PMCID: PMC6685108 DOI: 10.1177/1744806919866340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Synovitis contributes to temporomandibular joint (TMJ) pain, nevertheless, the detailed nociceptive mechanism remains unclear. In this study, a rat model of TMJ synovitis was induced by intra-articular injection with complete Freund’s adjuvant (CFA). After CFA-induced synovitis, pain behaviors were observed. Then, TMJ, trigeminal ganglion, and trigeminal nucleus caudalis (TNC) tissues were collected, and immunohistochemistry was used to detect the expression of substance P (SP) and protein gene product 9.5 (PGP9.5) in the synovium tissue. Furthermore, the gene expression level of SP and PGP9.5 in synovium was detected by reverse transcription-polymerase chain reaction (RT-PCR). Afterwards, the expression of SP in the trigeminal ganglion and TNC and c-fos in the TNC was detected by immunohistochemistry. Compared with the control group, the expression of SP and PGP9.5 nerve fibers density and gene levels of them in the synovium tissue were significantly increased in CFA-induced TMJ synovitis rats. Similarly, SP expression in the trigeminal ganglion and TNC, and c-fos expression in the TNC were also obviously increased in CFA-induced TMJ synovitis rats. Collectively, CFA-induced rat TMJ synovitis resulted in obvious pain. This nociceptive reaction could be attributed to the augmented quantity of SP and PGP9.5 positive-stained nerve fibers distributed in the inflammatory synovium as well as enhanced SP expression in the trigeminal ganglion and TNC tissue. c-fos expression in the rat TNC illustrates CFA-induced TMJ synovitis can evoke the acute pain.
Collapse
Affiliation(s)
- Liqin Xu
- 1 State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Henghua Jiang
- 1 State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaping Feng
- 1 State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Pinyin Cao
- 1 State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Jin Ke
- 1 State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xing Long
- 2 Department of Oral and Maxillofacial Surgery, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
3
|
Hemokinin-1 Gene Expression Is Upregulated in Trigeminal Ganglia in an Inflammatory Orofacial Pain Model: Potential Role in Peripheral Sensitization. Int J Mol Sci 2020; 21:ijms21082938. [PMID: 32331300 PMCID: PMC7215309 DOI: 10.3390/ijms21082938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/12/2020] [Accepted: 04/19/2020] [Indexed: 12/19/2022] Open
Abstract
A large percentage of primary sensory neurons in the trigeminal ganglia (TG) contain neuropeptides such as tachykinins or calcitonin gene-related peptide. Neuropeptides released from the central terminals of primary afferents sensitize the secondary nociceptive neurons in the trigeminal nucleus caudalis (TNC), but also activate glial cells contributing to neuroinflammation and consequent sensitization in chronic orofacial pain and migraine. In the present study, we investigated the newest member of the tachykinin family, hemokinin-1 (HK-1) encoded by the Tac4 gene in the trigeminal system. HK-1 had been shown to participate in inflammation and hyperalgesia in various models, but its role has not been investigated in orofacial pain or headache. In the complete Freund’s adjuvant (CFA)-induced inflammatory orofacial pain model, we showed that Tac4 expression increased in the TG in response to inflammation. Duration-dependent Tac4 upregulation was associated with the extent of the facial allodynia. Tac4 was detected in both TG neurons and satellite glial cells (SGC) by the ultrasensitive RNAscope in situ hybridization. We also compared gene expression changes of selected neuronal and glial sensitization and neuroinflammation markers between wild-type and Tac4-deficient (Tac4-/-) mice. Expression of the SGC/astrocyte marker in the TG and TNC was significantly lower in intact and saline/CFA-treated Tac4-/- mice. The procedural stress-related increase of the SGC/astrocyte marker was also strongly attenuated in Tac4-/- mice. Analysis of TG samples with a mouse neuroinflammation panel of 770 genes revealed that regulation of microglia and cytotoxic cell-related genes were significantly different in saline-treated Tac4-/- mice compared to their wild-types. It is concluded that HK-1 may participate in neuron-glia interactions both under physiological and inflammatory conditions and mediate pain in the trigeminal system.
Collapse
|
4
|
Funahashi H, Miyahara Y, Haruta-Tsukamoto A, Matsuo T, Naono-Nakayama R, Ebihara K, Nishimori T, Ishida Y. Pharmacological characteristics of hemokinin-1-derived peptides in rat pruriceptive processing. Peptides 2020; 124:170232. [PMID: 31843553 DOI: 10.1016/j.peptides.2019.170232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 11/21/2022]
Abstract
Hemokinin-1 (HK-1) is a member of mammalian tachykinin peptide family, and [Leu11]-HK-1 has an antagonistic effect on HK-1. The attenuation of pruritogen-induced scratching behavior by pretreatment with [Leu11]-HK-1 indicates the involvement of HK-1 in pruriceptive processing. However, it remains unclear whether the intrathecal or intranasal administration of HK-1-derived peptides, such as [D-Trp7,9]-[Leu11]-HK-1 or [D-Trp7]-[Leu11]-HK-1, elicits the effects different from [Leu11]-HK-1. The induction of scratching by intrathecal administration of HK-1 was attenuated 30 min, 4 h and 24 h after pretreatment with [Leu11]-HK-1, [D-Trp7,9]-[Leu11]-HK-1 and [D-Trp7]-[Leu11]-HK-1 or [D-Trp9]-[Leu11]-HK-1, respectively. Similarly, the scratching induced by subcutaneous injection of pruritogens as chloroquine and histamine was ameliorated 30 min and 24 h after pretreatment with [Leu11]-HK-1 and these three HK-1-derived peptides, respectively. Moreover, the effective minimum concentrations of intrathecal administrations of [D-Trp9]-[Leu11]-HK-1 on scratching induced by chloroquine and histamine were 10-6 M, while the effective minimum concentrations of intranasal administration of this peptide on scratching induced by chloroquine and histamine were 10-5 M and 10-4 M, respectively. Thus, the present results indicate that the intrathecal administration of HK-1-derived peptides with D-Trp extends its effective time on scratching induced by intrathecal administration of HK-1 and pruritogens such as chloroquine and histamine. Similarly, the induction of scratching by pruritogens was attenuated by intranasal administration of HK-1-derived peptide, although the effective minimum concentration of this peptide was slightly lower than that of intrathecal administration, indicating that intranasal administration is an effective tool for carrying peptides into the brain.
Collapse
Affiliation(s)
- Hideki Funahashi
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Yu Miyahara
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Ayaka Haruta-Tsukamoto
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Tomoko Matsuo
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Rumi Naono-Nakayama
- Division of Anatomy, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai 981-8558, Japan
| | - Kosuke Ebihara
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Toshikazu Nishimori
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan
| | - Yasushi Ishida
- Department of Psychiatry, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki City, Miyazaki, 889-1692, Japan.
| |
Collapse
|