1
|
Ballı U, Bozkurt Doğan Ş, Öngöz Dede F, Gülle K, Çölgeçen H, Avcı B, Akpolat Ferah M, Kurtiş MB. Effects of Coriander on the Repair Process of Experimentally-induced Periodontitis in Rats. J Vet Dent 2024:8987564241232862. [PMID: 38470443 DOI: 10.1177/08987564241232862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
The aim of this study was to evaluate the effects of Coriandrum sativum L. (CSL) seed extract on gingival levels of antioxidant enzymes, pro-inflammatory cytokines and on alveolar bone and attachment levels after experimental periodontitis induction in rats and compare it with low-dose doxycycline (LDD). Forty adult male Wistar Albino rats were divided randomly into 5 groups as follows: 1 = periodontally healthy (control); 2 = periodontitis; 3 = periodontitis + CSL (32 mg/kg); 4 = periodontitis + CSL (200 mg/kg); and 5 = periodontitis + LDD (6 mg/kg). Gingival superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) levels were evaluated by enzyme-linked immunosorbent assay. The presence of tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1βeta (IL-1β) immunoreactivity was detected immunohistochemically. Alveolar bone area in the furcation space (ABA), alveolar bone loss (ABL), and attachment loss (AL) were evaluated histomorphometrically. The SOD level was lower in group 5 than in groups 2, 3, and 4. The IL-1β level was highest in group 4. The TNF-α level was statistically higher in groups 2 and 4 than in groups 1, 3, and 5. The IL-6 level was highest in group 4. Its level was higher in groups 2 and 3 than in group 5. ABA was less in groups 2, 3, and 4 compared to groups 1 and 5. ABL was less in group 5 than in groups 2, 3, and 4. AL was greater in group 4 than in group 5. The use of 200 mg/kg CSL showed a pro-inflammatory effect and IL-1β and TNF-α levels decreased after 32 mg/kg CSL application in the treatment of periodontitis.
Collapse
Affiliation(s)
- Umut Ballı
- Department of Periodontology, Yüreğir Karşıyaka Ağız ve Diş Sağlığı Hastanesi, Adana, Turkey
| | - Şeyma Bozkurt Doğan
- Department of Periodontology, Faculty of Dentistry, Ankara Yıldırım Beyazıt University, Ankara, Turkey
| | - Figen Öngöz Dede
- Department of Periodontology, Faculty of Dentistry, Ordu University, Ordu, Turkey
| | - Kanat Gülle
- Department of Medical Histology and Embryology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Hatice Çölgeçen
- Department of Biology, Faculty of Sciences and Arts, Zonguldak Bülent Ecevit University, Zonguldak, Turkey
| | - Bahattin Avcı
- Department of Medical Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| | - Meryem Akpolat Ferah
- Department of Medical Histology and Embryology, Faculty of Medicine, Bülent Ecevit University, Zonguldak, Turkey
| | - M Bülent Kurtiş
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey
| |
Collapse
|
2
|
Atalay M, Uslu MÖ, İçen MS, Üremiş N, Türköz Y. Preventive effects of systemic Pistacia eurycarpa Yalt. administration on alveolar bone loss and oxidative stress in rats with experimental periodontitis. J Appl Oral Sci 2024; 32:e20230344. [PMID: 38359268 PMCID: PMC10984577 DOI: 10.1590/1678-7757-2023-0344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 02/17/2024] Open
Abstract
OBJECTIVE This study aimed to investigate the effects of systemic administration of P. eurycarpa Yalt. plant extract on alveolar bone loss and oxidative stress biomarkers in gingival tissue in a rat model of experimental periodontitis. METHODOLOGY 32 male Wistar albino rats, weighing 200-250 g, were divided into four groups (n=8): Healthy control (HC), Experimental periodontitis control (EPC), Experimental periodontitis 400 mg/kg (EP400), Experimental periodontitis 800 mg/kg (EP800). Experimental periodontitis was induced using the ligating method. Distilled water was administered to the HC and EPC groups and the plant extract was administered to the EP400 and EP800 groups by oral gavage at doses of 400 mg/kg and 800 mg/kg, respectively. The rats were sacrificed on the 15th day. The values of glutathione peroxidase GSH-Px, malondialdehyde (MDA), superoxide dismustase (SOD), interleukin-1β (IL-1β), interleukin-10 (IL-10), total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI) in the gingival tissues were analyzed by ELISA tests. Alveolar bone loss was assessed using micro-CT images of the maxilla. RESULTS Although the IL-1β, TOS, OSI results of the healthy control group were lower than those of the other groups, the TAS values were higher (p<0.05). No significant difference was found in the biochemical parameters among the EPC, EP400, and EP800 groups (p>0.05). Alveolar bone loss was significantly reduced in the extract groups compared to the EPC group (p<0.001). CONCLUSION Within the limitations of this study, it was observed that the systemic P. eurycarpa extract application reduced alveolar bone loss in a rat model of experimental periodontitis. Further studies are needed to elucidate the beneficial effects of P. eurycarpa.
Collapse
Affiliation(s)
- Mustafa Atalay
- 75th Year Oral and Dental Health HospitalMinistry of HealthAnkaraTurkeyMinistry of Health, 75 Year Oral and Dental Health Hospital, Ankara, Turkey
| | - Mustafa Özay Uslu
- Alanya Alaaddin Keykubat UniversityFaculty of DentistryDepartment of PeriodontologyAntalyaTurkeyAlanya Alaaddin Keykubat University, Faculty of Dentistry, Department of Periodontology, Antalya, Turkey.
| | - Mehmet Sina İçen
- Inonu UniversityFaculty of PharmacyDepartment of PharmacognosyMalatyaTurkeyAssistant Prof. Dr. Mehmet Sina İçen, Inonu University, Faculty of Pharmacy, Department of Pharmacognosy, Malatya, Turkey.
| | - Nuray Üremiş
- Inonu UniversityFaculty of MedicineDepartment of Medical BiochemistryMalatyaTurkeyPh.D Nuray Üremiş, Inonu University, Faculty of Medicine, Department of Medical Biochemistry, Malatya, Turkey.
| | - Yusuf Türköz
- Inonu UniversityFaculty of MedicineDepartment of Medical BiochemistryMalatyaTurkeyProf. Dr. Yusuf Türköz, Inonu University, Faculty of Medicine, Department of Medical Biochemistry, Malatya, Turkey.
| |
Collapse
|
3
|
YİĞİT U, KIRZIOĞLU FY, ÖZMEN Ö, UĞUZ YA. Effects of LDD and CAPE administration on total antioxidant and total oxidant levels in experimental periodontitis model of rat brain. ACTA MEDICA ALANYA 2022. [DOI: 10.30565/medalanya.1052586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
4
|
Öngöz Dede F, Bozkurt Doğan Ş, Balli U, Durmuşlar MC, Avci B, Gülle K, Akpolat Ferah M. The effect of ellagic acid on the repair process of periodontal defects related to experimental periodontitis in rats. J Appl Oral Sci 2021; 29:e20210160. [PMID: 34586188 PMCID: PMC8483071 DOI: 10.1590/1678-7757-2021-0160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/06/2021] [Indexed: 11/22/2022] Open
Abstract
Objective This study aims to evaluate the effect of ellagic acid (EA) by measuring the levels of alveolar bone resorption and inflammatory and oxidative stress markers in the periodontal tissues and serum on the periodontal repair process related to experimental periodontitis in rats. Methodology Forty Wistar rats were divided into four study groups as follows: Group 1=healthy control (n=10); Group 2=EA control (15 mg/kg)(n=10); Group 3=periodontitis (n=10); Group 4=periodontitis+EA (15 mg/kg) (n=10). The periodontitis model was established by ligating bilateral mandibular first molars for 14 days. Then, rats were given normal saline or EA for another 14 days by gavage administration. Serum and gingiva myeloperoxidase (MPO) activity, 8-hydroxydeoxyguanosine(8-OHdG), and glutathione (GSH) levels were analyzed by ELISA. İmmunohistochemical analysis was used to detect Interleukin (IL)-6, IL-10, and tumor necrosis factor-alpha (TNF-α) immunoreactivities in the periodontal tissues. Alveolar bone loss (ABL) and attachment loss (AL) was evaluated by histomorphometry analysis. Results ABL and AL were statistically higher in group 3 than in groups 1, 2 and 4 and in group 4 than in groups 1 and 2 (p<0.05). MPO activities in gingival tissue and serum were significantly increased in group 3 compared to groups 1 and 2 (p<0.05). Significantly higher serum GSH levels, lower gingiva, and serum 8-OHdG levels, and MPO activity were observed in group 4 compared to group 3 (p<0.05). Rats with periodontitis (group 3) expressed significantly higher immunoreactivities of IL-6 and TNF-α and lower IL-10 immunoreactivity compared to those other groups (p<0.05). IL-6 and TNF-α immunoreactivities significantly decreased and IL-10 immunoreactivity increased in group 4 after the use of EA compared to group 3 (p<0.001). Conclusions Our findings showed that EA provides significant improvements on gingival oxidative stress and inflammatory markers and alveolar bone resorption in the repair process associated with experimental periodontitis. Therefore, EA may have a therapeutic potential on periodontitis.
Collapse
Affiliation(s)
- Figen Öngöz Dede
- Ordu University, Faculty of Dentistry, Department of Periodontology, Ordu, Turkey
| | - Şeyma Bozkurt Doğan
- Yıldırım Beyazıt University, Faculty of Dentistry, Department of Periodontology, Ankara, Turkey
| | - Umut Balli
- Bezmialem Vakif University, Faculty of Dentistry, Department of Periodontology, İstanbul, Turkey
| | - Mustafa Cenk Durmuşlar
- Kent University, Faculty of Dentistry, Department of Oral and Maxillofacial Surgery, İstanbul, Turkey
| | - Bahattin Avci
- Ondokuzmayis University, Faculty of Medicine, Department of Biochemistry, Samsun, Turkey
| | - Kanat Gülle
- Süleyman Demirel University, Faculty of Medicine, Department of Histology and Embryology, Isparta, Turkey
| | - Meryem Akpolat Ferah
- Bülent Ecevit University, Faculty of Medicine, Department of Histology and Embryology, Zonguldak, Turkey
| |
Collapse
|
5
|
Lv L, Cui H, Ma Z, Liu X, Yang L. Recent progresses in the pharmacological activities of caffeic acid phenethyl ester. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:1327-1339. [PMID: 33492405 DOI: 10.1007/s00210-021-02054-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/14/2021] [Indexed: 12/16/2022]
Abstract
The past decades have seen a growing interest in natural products. Caffeic acid phenethyl ester (CAPE), a flavonoid isolated from honeybee propolis, has shown multiple pharmacological potentials, including anti-cancer, anti-inflammatory, antioxidant, antibacterial, antifungal, and protective effects on nervous systems and multiple organs, since it was found as a potent nuclear factor κB (NF-κB) inhibitor. This review summarizes the advances in these beneficial effects of CAPE, as well as the underlying mechanisms, and proposes that CAPE offers an opportunity for developing therapeutics in multiple diseases. However, clinical trials on CAPE are necessary and encouraged to obtain certain clinically relevant conclusions.
Collapse
Affiliation(s)
- Lili Lv
- Jilin University, Changchun, 130021, China
| | | | - Zhiming Ma
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Xin Liu
- Eye Center, The Second Hospital of Jilin University, Changchun, 130041, China.
| | - Longfei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetics, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
6
|
Otan Özden F, Lütfioğlu M, Demir E, Bilgici B. Antioxidant effect of caffeic acid phenethyl ester in experimentally induced periodontitis. Clin Oral Investig 2021; 25:4959-4966. [PMID: 33770282 DOI: 10.1007/s00784-021-03805-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/20/2021] [Indexed: 12/18/2022]
Abstract
OBJECTIVES The aim of the present study was to evaluate the antioxidant effect of systemically administered caffeic acid phenethyl ester (CAPE) in periodontitis. MATERIALS AND METHODS Forty rats were randomly divided into four groups: control, lipopolysaccharide-induced experimental periodontitis (LPS), CAPE 5: LPS+5 μmol/kg/day CAPE, and CAPE 10: LPS+10 μmol/kg/day CAPE. Following lipopolysaccharide-induced experimental periodontitis, CAPE was administered intraperitoneally for 28 days. Gingival and serumal total antioxidant status (TAS) and total oxidant status (TOS) were analyzed by enzyme-linked immunosorbent assay (ELISA). RESULTS Gingival tissue TAS was significantly higher with CAPE application compared with the LPS group and was highest in the CAPE 10 group (p<0.05). Gingival tissue TOS was highest in the LPS group, and both of the CAPE dosages decreased the gingival tissue TOS, with the highest decrease in the CAPE 10 group (p<0.05). The differences were not significant for serumal TAS or TOS levels (p>0.05). CONCLUSIONS The effect of CAPE on increased TAS and decreased TOS levels in inflamed gingival tissue indicates the antioxidant therapeutic potential of CAPE in periodontitis. CLINICAL RELEVANCE Within the limitations of this study, CAPE may be suggested as an effective host modulator agent for reducing oxidative stress in gingival tissue and might be considered as an adjunctive therapy in periodontitis.
Collapse
Affiliation(s)
- Feyza Otan Özden
- Department of Periodontology, School of Dentistry, Ondokuz Mayıs University, Kurupelit, 55139, Samsun, Turkey.
| | - Müge Lütfioğlu
- Department of Periodontology, School of Dentistry, Ondokuz Mayıs University, Kurupelit, 55139, Samsun, Turkey
| | - Esra Demir
- Department of Periodontology, School of Dentistry, Biruni University, İstanbul, Turkey
| | - Birşen Bilgici
- Department of Biochemistry, School of Medicine, Ondokuz Mayıs University, Samsun, Turkey
| |
Collapse
|
7
|
Ekeuku SO, Pang KL, Chin KY. Effects of Caffeic Acid and Its Derivatives on Bone: A Systematic Review. Drug Des Devel Ther 2021; 15:259-275. [PMID: 33519191 PMCID: PMC7837552 DOI: 10.2147/dddt.s287280] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 12/18/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Caffeic acid is a metabolite of hydroxycinnamate and phenylpropanoid, which are commonly synthesized by all plant species. It is present in various food sources that are known for their antioxidant properties. As an antioxidant, caffeic acid ameliorates reactive oxygen species, which have been reported to cause bone loss. Some studies have highlighted the effects of caffeic acid against bone resorption. METHODS A systematic review of the literature was conducted to identify relevant studies on the effects of caffeic acid on bone. A comprehensive search was conducted from July to November 2020 using PubMed, Scopus, Cochrane Library and Web of Science databases. Cellular, animal and human studies reporting the effects of caffeic acid, as a single compound, on bone cells or bone were considered. RESULTS The literature search found 226 articles on this topic, but only 24 articles met the inclusion criteria and were included in this review. The results showed that caffeic acid supplementation reduced osteoclastogenesis and bone resorption, possibly through its antioxidant potential and increased expression of osteoblast markers. However, some studies showed that caffeic acid did not affect bone resorption in ovariectomized rats and might impair bone mechanical properties in normal rats. CONCLUSION Caffeic acid potentially regulates the bone remodelling process by inhibiting osteoclastogenesis and bone resorption, as well as osteoblast apoptosis. Thus, it has medicinal values against bone diseases.
Collapse
Affiliation(s)
- Sophia Ogechi Ekeuku
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Lun Pang
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Antibacterial Effect of Caffeic Acid Phenethyl Ester on Cariogenic Bacteria and Streptococcus mutans Biofilms. Antimicrob Agents Chemother 2020; 64:AAC.00251-20. [PMID: 32540977 DOI: 10.1128/aac.00251-20] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 05/31/2020] [Indexed: 02/05/2023] Open
Abstract
Dental caries is the most common disease in the human mouth. Streptococcus mutans is the primary cariogenic bacterium. Propolis is a nontoxic natural product with a strong inhibitory effect on oral cariogenic bacteria. The polyphenol-rich extract from propolis inhibits S. mutans growth and biofilm formation, as well as the genes involved in virulence and adherence, through the inhibition of glucosyltransferases (GTF). However, because the chemical composition of propolis is highly variable and complex, the mechanism of its antimicrobial action and the active compound are controversial and not completely understood. Caffeic acid phenethyl ester (CAPE) is abundant in the polyphenolic compounds from propolis, and it has many pharmacological effects. In this study, we investigated the antibacterial effects of CAPE on common oral cariogenic bacteria (Streptococcus mutans, Streptococcus sobrinus, Actinomyces viscosus, and Lactobacillus acidophilus) and its effects on the biofilm-forming and cariogenic abilities of S. mutans CAPE shows remarkable antimicrobial activity against cariogenic bacteria. Moreover, CAPE also inhibits the formation of S. mutans biofilms and their metabolic activity in mature biofilms. Furthermore, CAPE can inhibit the key virulence factors of S. mutans associated with cariogenicity, including acid production, acid tolerance, and the bacterium's ability to produce extracellular polysaccharides (EPS), without affecting bacterial viability at subinhibitory levels. In conclusion, CAPE appears to be a new agent with anticariogenic potential, not only via inhibition of the growth of cariogenic bacteria.
Collapse
|
9
|
Keirns BH, Lucas EA, Smith BJ. Phytochemicals affect T helper 17 and T regulatory cells and gut integrity: implications on the gut-bone axis. Nutr Res 2020; 83:30-48. [PMID: 33010588 DOI: 10.1016/j.nutres.2020.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 08/05/2020] [Accepted: 08/11/2020] [Indexed: 12/16/2022]
Abstract
The pathology of osteoporosis is multifactorial, but a growing body of evidence supports an important role of the gut-bone axis, especially in bone loss associated with menopause, rheumatoid arthritis, and periodontal disease. Aberrant T cell responses favoring an increase in the ratio of T helper 17 cells to T regulatory cells play a critical role in the underlying etiology of this bone loss. Many of the dietary phytochemicals known to have osteoprotective activity such as flavonoids, organosulfur compounds, phenolic acids, as well as the oligosaccharides also improve gut barrier function and affect T cell differentiation and activation within gut-associated lymphoid tissues and at distal sites. Here, we examine the potential of these phytochemicals to act as prebiotics and immunomodulating agents, in part targeting the gut to mediate their effects on bone.
Collapse
Affiliation(s)
- Bryant H Keirns
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| | - Edralin A Lucas
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| | - Brenda J Smith
- Department of Nutritional Sciences, Oklahoma State University, Stillwater, OK 74078.
| |
Collapse
|
10
|
Yao C, Zhang Q, Li J, She P, Kong F, Du Y, Zhang F. Implantable zoledronate-PLGA microcapsules ameliorate alveolar bone loss, gingival inflammation and oxidative stress in an experimental periodontitis rat model. J Biomater Appl 2020; 35:569-578. [PMID: 32772779 DOI: 10.1177/0885328220944683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The effect of implantable Zoledronate-PLGA microcapsules (PLGA-ZOL) in periodontitis remains unclear. In this study, we aimed to explore the potential role of PLGA-ZOL in protecting periodontitis and elucidate the underlying mechanism. A rat model of periodontitis was established by ligation the mandibular first molars, then PLGA-ZOL was implanted. The healing volume was scanned by cone-beam computed tomography. Cytokine levels in the gingival tissues were determined by ELISA and RT-PCR. Oxidative stress was indicated by detecting superoxide dismutase concentration and catalase activity. After periodontitis model was successfully established in rats, PLGA-ZOL treatment significantly attenuated alveolar bone loss, as indicated by the increased total healing volume, bone volume/tissue volume and osteoprotegerin level, as well as decreased sRANKL level. PLGA-ZOL treatment also suppressed the inflammatory activities by inhibiting pro-inflammatory cytokine production (TNF-α, IL-1β) but increasing anti-inflammatory cytokine secretion (IL-10). Furthermore, PLGA-ZOL was found to ameliorate oxidative stress in gingival tissues. In conclusion, PLGA-ZOL microcapsules ameliorate alveolar bone loss, gingival inflammation and oxidative stress in an experimental rat model of periodontitis.
Collapse
Affiliation(s)
- Chun Yao
- The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Stomatology, Zhenjiang First People's Hospital, Department of Stomatology, People's Hospital Affiliated to Jiangsu University, Dianli Road, Zhenjiang, China
| | - Qingqing Zhang
- The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Stomatology, Jiangning Hospital Affiliated to Nanjing Medicine University, Nanjing, China
| | - Jun Li
- The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Stomatology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Peng She
- Department of Stomatology, Zhenjiang First People's Hospital, Department of Stomatology, People's Hospital Affiliated to Jiangsu University, Dianli Road, Zhenjiang, China
| | - Fanzhi Kong
- Department of Stomatology, Zhenjiang First People's Hospital, Department of Stomatology, People's Hospital Affiliated to Jiangsu University, Dianli Road, Zhenjiang, China
| | - Yanxiao Du
- The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.,Department of Stomatology, Qingdao Central Hospital, Qingdao, China
| | - Feimin Zhang
- The Affiliated Stomatological Hospital of Nanjing Medical University, Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Tosun S, Karataslioglu E. Does Caffeic Acid Phenethyl Ester as an Irrigation Solution Increase the Adhesive Quality of Root Canal Sealer? JOURNAL OF ADVANCED ORAL RESEARCH 2020. [DOI: 10.1177/2320206820911766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Aim: To evaluate the effect of the caffeic acid phenethyl ester (CAPE) as a root canal irrigation agent on the push-out bond strength of the AH-Plus sealer. Materials and Methods: A total of 75 single-rooted teeth were decoronated and were randomly divided into 5 groups of 15 roots for irrigation protocols: Group NaOCl: 5.25 percent NaOCl; Group CAPE: 0.5 percent CAPE; Group NaOCl + ethylenediaminetetraacetic acid (EDTA): 5.25 percent NaOCl-17 percent EDTA; Group NaOCl + CAPE: 5.25 percent NaOCl-0.5 percent CAPE; and Group CAPE + EDTA: 0.5 percent CAPE-17 percent EDTA (for 3 min each group). All root canals were then obturated and 1-mm-thick horizontal slices were obtained from different root thirds of the root canal (coronal, middle, and apical, respectively). The groups were challenged with push-out tests. Modes of failure were determined under a stereomicroscope. Results: The CAPE-EDTA-treated group presented the highest mean bond strength in the coronal region of root dentin ( P < .05). The CAPE-treated group had a higher mean bond strength than the NaOCl-treated group ( P < .05). The mixed mode of failure was most predominant in all groups. Conclusion: Under the presented in vitro conditions, CAPE alone or in combination with EDTA or NaOCl demonstrated a positive effect that increased the push-out bond strength of the AH-Plus sealer to root dentin.
Collapse
Affiliation(s)
- Samet Tosun
- Faculty of Dentistry, Department of Endodontics, Pamukkale University, Denizli, Turkey
| | - Emrah Karataslioglu
- Faculty of Dentistry, Department of Endodontics, zmir KatipÇelebi University, zmir, Turkey
| |
Collapse
|
12
|
Karatas O, Balci Yuce H, Taskan MM, Gevrek F, Alkan C, Isiker Kara G, Temiz C. Cinnamic acid decreases periodontal inflammation and alveolar bone loss in experimental periodontitis. J Periodontal Res 2020; 55:676-685. [PMID: 32335913 DOI: 10.1111/jre.12754] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/13/2020] [Accepted: 04/02/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND OBJECTIVE Periodontitis is the chronic destructive disease of the periodontium, which causes severe inflammation in the tissues. Cinnamic acid as an unsaturated carboxylic acid might prevent inflammation and periodontal destruction. The present study aimed to evaluate the effects of cinnamic acid in two different forms as free cinnamic acid and cinnamic acid liposome on experimental periodontitis in Wistar rats. METHODS Thirty-two female rats were used in the present study. Four main groups were created as follows: C: control group; P: periodontitis group; C-P: free cinnamic acid-administered periodontitis group; and CL-P: cinnamic acid liposome applied group. Periodontitis was induced via ligating 4-0 silk sutures around lower first molar teeth on both right and left mandibles. The study duration was 30 days, and the ligatures were removed from half of the rats in the periodontitis-induced groups. The other half carried the ligatures throughout 30 days, and all rats were euthanized at 30th day. Mandibles were removed and evaluated via stereomicroscope and underwent histological procedures. Inflammatory cell counts, osteoblast, and osteoclast cell counts were determined in hematoxylin-eosin-stained slides, and peroxisome proliferator-activated receptor (PPAR)-γ, cyclooxygenase (COX)-2, receptor activator of nuclear factor κ-B (RANKL), and osteoprotegerin (OPG) expressions were evaluated by immunohistochemistry. RESULTS Control group had the lowest bone loss, and periodontitis group which kept ligatures had the highest bone loss compared to the other groups. Ligature removal provided significant improvement in bone measurements. Cinnamic acid groups also showed lower bone loss compared to the periodontitis group. The inflammatory cell and osteoclast counts were also higher in the periodontitis group, and both applications of cinnamic acid decreased these values. Osteoblast cells were the lowest in the periodontitis group, and cinnamic acid increased these counts. PPAR-γ and COX-2 levels were higher in the periodontitis group, and cinnamic acid decreased these levels but not to a significant level except for the cinnamic acid liposome ligature removal group, which had significantly lower values in the PPAR-γ and COX-2. OPG levels were lower in the periodontitis group compared to the other groups. Cinnamic acid significantly decreased RANKL and increased OPG levels. CONCLUSION Periodontitis caused increased inflammation and bone destruction accompanied by increased PPAR-γ, COX-2, and RANKL levels and osteoclast counts. Cinnamic acid decreased osteoclast counts and inflammation and increased osteoblast counts and OPG expression in the present animal model of periodontitis.
Collapse
Affiliation(s)
- Ozkan Karatas
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Hatice Balci Yuce
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Mehmet Murat Taskan
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Fikret Gevrek
- Department of Histology and Embryology, Faculty of Medicine, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Cemil Alkan
- Department of Chemistry, Faculty of Science and Literature, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Gozde Isiker Kara
- Department of Periodontology, Faculty of Dentistry, Tokat Gaziosmanpasa University, Tokat, Turkey
| | - Cengiz Temiz
- Science and Technology Research and Application Center, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| |
Collapse
|
13
|
Bayer Alinca S, Sağlam E, Zengin Celik T, Hacisalihoglu P, Doğan MA. Is low level laser therapy or ozone therapy more effective for bone healing? Understanding the mechanisms of HIF-1α, RANKL and OPG. Biotech Histochem 2020; 95:597-604. [PMID: 32292090 DOI: 10.1080/10520295.2020.1743360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Periodontitis is a common chronic infection of dental tissues. Ozone therapy (OT) and low level laser therapy (LLLT) are useful treatments for periodontitis. We investigated the effects of OT and LLLT on periodontal disease-induced bone destruction in rats with experimentally induced periodontitis (EP). We used 30 male Wistar rats divided into three groups: control, OT and LLLT. EP was induced by placing a 3.0 silk suture around the cervix of the left mandibular first molar tooth. OT was performed using an ozone generator at 80% concentration. LLLT was applied using a diode laser. Both OT and LLLT were performed for two weeks at two day intervals. Histomorphometric and immunohistochemical analyses also were performed. Alveolar bone loss was significantly less in the LLLT group compared to the control group. The number of HIF-1α positive cells was significantly less in the LLLT group compared to the control group. We found significantly fewer RANKL-positive cells in the OT group compared to the control group. The number of osteoprotegerin (OPG) positive cells was significantly greater for the LLLT group than for the control group. Although both treatments produced positive effects, LLLT appears to be more effective for increasing alveolar bone formation.
Collapse
Affiliation(s)
- S Bayer Alinca
- Kecioren Osmanli Public Oral Health Center , Ankara, Turkey
| | - E Sağlam
- Department of Periodontology, Faculty of Dentistry, Health Sciences University , İstanbul, Turkey
| | | | - P Hacisalihoglu
- Department of Pathology, Yeni Yuzyil University , Istanbul, Turkey
| | - M A Doğan
- Department of Pathology, Istanbul University , Istanbul, Turkey
| |
Collapse
|
14
|
Aral CA, Aral K, Yay A, Özçoban Ö, Berdeli A, Saraymen R. Effects of colchicine on gingival inflammation, apoptosis, and alveolar bone loss in experimental periodontitis. J Periodontol 2019. [PMID: 29520818 DOI: 10.1002/jper.17-0359] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The aim of the study was to investigate the effects of colchicine on cytokine production, apoptosis, alveolar bone loss, and oxidative stress in an experimental model of periodontitis in rats. METHODS Forty-eight rats were divided equally into four groups: healthy (H); periodontitis (P); periodontitis+colchicine low dose (CL, 30 μg/kg/day), and periodontitis+colchicine high dose (CH, 100 μg/kg/day). After 11 days, interleukin (IL) -1β, IL-8, and IL-10 were analyzed in gingival samples using Enzyme-Linked ImmunoSorbent Assay. Receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG), total oxidative stress (TOS), total antioxidant status (TAS), and oxidative stress index (OSI) were measured in gingiva and serum. Alveolar bone volume was evaluated via micro-CT. Apoptotic cells were detected by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay in histological sections. RESULTS Colchicine treatment significantly reduced IL-1β, IL-8, RANKL, RANKL/OPG, TOS, OSI, and bone volume ratio levels, and increased TAS levels compared to group P (p < 0.05). High dose colchicine treatment (CH) significantly decreased TUNEL+ cell counts compared to group P (p < 0.05). CONCLUSIONS These finding suggest that colchicine has a prophylactic potential for the prevention of periodontal tissue destruction through anti-inflammatory, anti-oxidative, anti-apoptotic, and bone-protective effects.
Collapse
Affiliation(s)
- Cüneyt Asım Aral
- Division of Periodontics, Malatya Oral and Dental Heath Hospital, Malatya, Turkey
| | - Kübra Aral
- Division of Periodontics, Malatya Oral and Dental Heath Hospital, Malatya, Turkey
| | - Arzu Yay
- Department of Histology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Özge Özçoban
- Department of Histology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Afig Berdeli
- Department of Paediatrics, Faculty of Medicine, Molecular Medicine Laboratory, Ege University, Izmir, Turkey
| | - Recep Saraymen
- Department of Biochemistry, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
15
|
KIZILDAĞ A, Arabacı T, Albayrak M, Taşdemir U, Mergen Dalyanoğlu M, Aksu Kızıldağ C. Evaluation of Caffeic Acid Phenethyl Ester Administration in Chronically Stressed Rats with Experimental Periodontitis. CUMHURIYET DENTAL JOURNAL 2019. [DOI: 10.7126/cumudj.513701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
16
|
Caffeic acid phenethyl ester protects against oxidative stress and dampens inflammation via heme oxygenase 1. Int J Oral Sci 2019; 11:6. [PMID: 30783082 PMCID: PMC6381107 DOI: 10.1038/s41368-018-0039-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/18/2018] [Accepted: 07/16/2018] [Indexed: 12/17/2022] Open
Abstract
Periodontal disease is associated with chronic oxidative stress and inflammation. Caffeic acid phenethyl ester (CAPE), which is a potent inducer of heme oxygenase 1 (HO1), is a central active component of propolis, and the application of propolis improves periodontal status in diabetic patients. Here, primary murine macrophages were exposed to CAPE. Target gene expression was assessed by whole-genome microarray, RT-PCR and Western blotting. The antioxidative and anti-inflammatory activities of CAPE were examined by exposure of the cells to hydrogen peroxide, saliva and periodontal pathogens. The involvement of HO1 was investigated with the HO1 inhibitor tin protoporphyrin (SnPP) and knockout mice for Nrf2, which is a transcription factor for detoxifying enzymes. CAPE increased HO1 and other heat shock proteins in murine macrophages. A p38 MAPK inhibitor and Nrf2 knockout attenuated CAPE-induced HO1 expression in macrophages. CAPE exerted strong antioxidative activity. Additionally, CAPE reduced the inflammatory response to saliva and periodontal pathogens. Blocking HO1 decreased the antioxidative activity and attenuated the anti-inflammatory activity of CAPE. In conclusion, CAPE exerted its antioxidative effects through the Nrf2-mediated HO1 pathway and its anti-inflammatory effects through NF-κB inhibition. However, preclinical models evaluating the use of CAPE in periodontal inflammation are necessary in future studies. Propolis, also known as ‘honeybee glue,’ may protect teeth and gums against periodontal disease. In periodontal disease, chronic inflammation and oxidative damage harm gum tissue and lead to tooth loss; propolis has been shown to improve periodontal health for patients with diabetes. Bees make propolis by mixing beeswax, honey, plant resins and their own saliva, and use it to patch honeycomb and prevent growth of microbes in the hive. Reinhard Gruber of the Department of Oral Biology at the Medical University of Vienna and of the Department of Periodontology, University of Bern and co-workers investigated the effects of one of propolis’ active ingredients, caffeic acid phenethyl ester (CAPE), on oxidative stress and inflammation. They found that CAPE reduced oxidative damage and dampened inflammation; further investigation revealed the genetic basis of the beneficial effects, paving the way for future clinical studies. These results may help identify alternative treatments for periodontal disease.
Collapse
|
17
|
Alpha lipoic acid attenuates hypoxia-induced apoptosis, inflammation and mitochondrial oxidative stress via inhibition of TRPA1 channel in human glioblastoma cell line. Biomed Pharmacother 2018; 111:292-304. [PMID: 30590317 DOI: 10.1016/j.biopha.2018.12.077] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/04/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022] Open
Abstract
Apoptosis, overload Ca2+ entry and oxidative stress are induced in neurons by hypoxia. Drug-resistant cancer cells are killed by hypoxic conditions. α-Lipoic acid (ALA) has antioxidant and pro-oxidant functions. The TRPA1 channel is activated by oxidative stress and pro-oxidant ALA may have a regulator role in the TRPA1 activity in the human glioblastoma (DBTRG) cells. The aim of this study was to evaluate if a combination therapy of ALA with a hypoxia can alter the effect of this hypoxia through TRPA1 activation in the DBTRG cells. The DBTRG cells were divided into four treatment groups as control, ALA (50 μM), and hypoxia and hypoxia + ALA. Hypoxia in the cells was induced by CoCl2 (200 μM). Apoptosis, Annexin V, mitochondrial membrane depolarization (JC-1), reactive oxygen species (ROS) production, IL-1β, IL-18, caspase 3 and 9 values were increased through activation of TRPA1 (cinnamaldehyde) in the cells by the hypoxia induction, although cell viability, reduced glutathione and glutathione peroxidase values were decreased by the treatments. The values were modulated in the cells by TRPA1 blocker (AP18) and ALA treatments. Involvements of TRPA1 activity on values in the cells were also confirmed by patch-clamp and laser confocal microscopy analyses. In conclusion, apoptotic, inflammatory and oxidant effects of hypoxia were increased by activation of TRPA1, but its action on the values was decreased by the ALA treatment. ALA treatment could be used as an effective strategy in the treatment of hypoxia-induced oxidative stress, apoptosis and inflammation in the neurons.
Collapse
|