Identification of Aberrantly Expressed lncRNAs Involved in Orthodontic Force Using a Subpathway Strategy.
COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019;
2019:9250129. [PMID:
31565070 PMCID:
PMC6745140 DOI:
10.1155/2019/9250129]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 07/07/2019] [Indexed: 01/25/2023]
Abstract
Background
The aim of the study was to identify key long noncoding RNAs (lncRNA) and related subpathways in the periodontal ligament tissue following orthodontic force.
Methods
We adopt a novelty subpathway strategy to identify lncRNAs competitively regulated functions and the key competitive lncRNAs in periodontal ligament disorders after undergoing orthodontic force. To begin with, patients with orthodontics in our hospital were enrolled in our research. The relationship of lncRNA-mRNA was established through shared predicted miRNA by using the hypergeometric test, Jaccard coefficient standardization, and the Pearson coefficient to determine the valid interaction relationship. After embedding screened lncRNA interactions to pathways, the significant subpathways were recognized by lenient distance and Wallenius approximation methods to calculate the false discovery rate value of each subpathway.
Results
The lncRNA-mRNA intersections including 263 lncRNAs, 1,599 mRNAs, and 3,762 interacting pairs were obtained. The enriched mRNAs were further enriched into various candidate pathways such as the PI3K-Akt signaling pathway. Several subpathways were screened, including the PI3K-Akt signaling pathway, 04510_1 focal adhesion, and p53 signaling pathway, respectively. The network of pathway-lncRNA-mRNA was constructed. Several key lncRNAs including DNAJC3-AS1, WDFY3-AS2, LINC00482, and DLEU2 were screened.
Conclusions
DNAJC3-AS1, WDFY3-AS2, LINC00482, and DLEU2 as aberrantly expressed lncRNAs involved in orthodontic force might play crucial roles in periodontal ligament disease pathogenesis.
Collapse