1
|
Calabrese EJ, Agathokleous E, Kapoor R, Dhawan G, Calabrese V. Stem Cells And Hormesis. CURRENT OPINION IN TOXICOLOGY 2022. [DOI: 10.1016/j.cotox.2022.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
2
|
Calabrese EJ. Human periodontal ligament stem cells and hormesis: Enhancing cell renewal and cell differentiation. Pharmacol Res 2021; 173:105914. [PMID: 34563662 DOI: 10.1016/j.phrs.2021.105914] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022]
Abstract
This paper provides a detailed assessment of hormetic dose responses by human periodontal ligament stem cells (hPDLSCs). Hormetic dose responses were induced by a broad range of chemicals, including dietary supplements (e.g., curcumin, ginsenoside Rg1), pharmaceutical/commercial substances (e.g., metformin) and endogenous agents (e.g., periostin, TNF-α) for cell proliferation/viability and osteogenic/adipocyte differentiation. This paper clarifies underlying mechanistic foundations of the hPLDSC hormetic dose responses and explores their therapeutic implications. Emerging evidence based on assessments of multiple types of stem cells shows hormetic dose responses to be widespread, reflecting considerable generality and a highly conserved evolutionary trait.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, Unites States.
| |
Collapse
|
3
|
Buranaphatthana W, Wu S, Makeudom A, Sastraruji T, Supanchart C, Krisanaprakornkit S. Involvement of the A disintegrin and metalloproteinase 9 in oral cancer cell invasion. Eur J Oral Sci 2021; 129:e12775. [PMID: 33786875 DOI: 10.1111/eos.12775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
The aims of this study were to determine the functional roles of the transmembrane glycoprotein, Disintegrin and metalloproteinase domain-containing protein 9 (ADAM 9), in the phosphorylation of epidermal growth factor receptor (EGFR) and AKT and in the aggressiveness of oral cancer cells. Immunohistochemistry and immunoblotting were conducted to determine expression of ADAM 9 and the levels of EGFR phosphorylated at the tyrosine 1173 residue (p-EGFRtyr1173 ) and AKT phosphorylated at the serine 473 residue (p-AKTser473 ) in oral cancer tissues and in the oral cancer cell lines HN5, HN6, HN15, and HN008. Small interfering RNA (siRNA) was used to inhibit expression of ADAM9 mRNA, and thus production of ADAM9 protein, in oral cancer cells. ADAM9-knockdown cells were examined for p-EGFRtyr1173 and p-AKTser473 levels and used for cell proliferation and invasion assays. A positive correlation among overexpression of ADAM 9, p-EGFRtyr1173 , and p-AKTser473 was found in oral cancer tissues. These biomolecules were also overexpressed in HN6 and HN15 cell lines. Expression of ADAM9 in HN6 and HN15 cells was statistically significantly inhibited by siRNA against ADAM9 mRNA (siADAM9) compared with the negative-control siRNA (scramble). The levels of p-AKTser473 , but not those of p-EGFRtyr1173 , were statistically significantly blocked by siADAM9. Although the proliferation rates of ADAM9 knocked-down HN6 and HN15 cells did not differ from those of cells exposed to scramble, a statistically significant decrease in cell invasion was found in these ADAM9-silenced cells. These results suggest a functional role of the ADAM 9/AKT signaling pathway in oral cancer cell invasion, which may be beneficial as a therapeutic target of oral cancer.
Collapse
Affiliation(s)
- Worakanya Buranaphatthana
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Shuangjiang Wu
- Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Anupong Makeudom
- Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Thanapat Sastraruji
- Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Chayarop Supanchart
- Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Suttichai Krisanaprakornkit
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
4
|
Jiang C, Wang Q, Song M, Wang M, Zhao L, Huang Y. Coronarin D affects TNF-α induced proliferation and osteogenic differentiation of human periodontal ligament stem cells. Arch Oral Biol 2019; 108:104519. [DOI: 10.1016/j.archoralbio.2019.104519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/01/2019] [Accepted: 08/08/2019] [Indexed: 02/08/2023]
|
5
|
Pathomburi J, Nalampang S, Makeudom A, Klangjorhor J, Supanchart C, Krisanaprakornkit S. Effects of low-dose irradiation on human osteoblasts and periodontal ligament cells. Arch Oral Biol 2019; 109:104557. [PMID: 31557575 DOI: 10.1016/j.archoralbio.2019.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 10/26/2022]
Abstract
OBJECTIVE To investigate the effects of dental x-ray on proliferation and mineralization in human primary osteoblasts as well as on proliferation and apoptotic potential in human periodontal ligament (PDL) cells. DESIGN Primary osteoblasts and PDL cells were irradiated with various doses of periapical radiography by repeated exposures and further incubated for 1, 3 or 7 days. Cell proliferation was assayed by BrdU incorporation. The effect of dental x-ray on mineralization in osteoblasts either before or after x-ray exposures was determined by Alizarin red staining. Both mRNA and protein expressions of BCL-2, an anti-apoptotic gene, and BAX, a pro-apoptotic gene, in PDL cells were analyzed by RT-qPCR and immunoblotting analysis, respectively. RESULTS Neither the proliferative nor the mineralization ability of irradiated osteoblasts was different from that of non-irradiated osteoblasts at any doses or time points. By contrast, there was a significant decrease in the proliferation of PDL cells on day 3 after repeated exposures to dental x-ray for 20 times (P < 0.05), whereas the ratio of BCL-2 to BAX mRNA and protein expressions in these irradiated PDL cells was significantly increased (P < 0.05). CONCLUSIONS Upon multiple exposures to dental x-ray used in intraoral radiography up to 20 times, there is no effect on the proliferation or the mineralization of osteoblasts, whereas the proliferative and apoptotic potentials of PDL cells are transiently decreased.
Collapse
Affiliation(s)
- Jarinya Pathomburi
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Sakarat Nalampang
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Anupong Makeudom
- Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Jeerawan Klangjorhor
- Musculoskeletal Science and Translational Research Center, Department of Orthopedics, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chayarop Supanchart
- Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Suttichai Krisanaprakornkit
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
6
|
Xu M, Wang T, Li W, Wang Y, Xu Y, Mao Z, Wu R, Liu M, Liu Y. PGE2 facilitates tail regeneration via activation of Wnt signaling in Gekko japonicus. J Mol Histol 2019; 50:551-562. [PMID: 31535259 DOI: 10.1007/s10735-019-09847-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/10/2019] [Indexed: 12/26/2022]
Abstract
Tail regeneration is a distinguishing feature of lizards; however, the mechanisms underlying tail regeneration remain elusive. Prostaglandin E2 (PGE2) is an arachidonic acid metabolite that has been extensively investigated in the inflammatory response under both physiological and pathological conditions. PGE2 also act as a regulator of hematopoietic stem cell homeostasis by interacting with Wnt signaling molecules. The present study aims to identify the effects of PGE2 on tail regeneration and the molecular mechanisms behind it. We initially found that PGE2 levels increased during the early stages of tail regeneration, accompanied by the up-regulated expression of cyclooxygenase 1 and cyclooxygenase 2. Next, we demonstrated that reduced PGE2 production leads to the retardation of tail regeneration. Subsequent experiments demonstrated that this effect is likely mediated by Wnt signaling, which proposing that the activation of the Wnt pathway is essential for the initiation of regeneration. The results showed that inhibition of PGE2 production could suppress Wnt activation and inhibit the proliferation of both epithelial and blastema cells. Furthermore, our findings indicated that forced activation of Wnt signaling could rescue the inhibitory effect of Cox antagonist on regeneration, suggesting a positive role of PGE2 on tail regeneration via a non-inflammatory mechanism.
Collapse
Affiliation(s)
- Man Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Tiantian Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Wenjuan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yanran Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Zuming Mao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Ronghua Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Mei Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China
| | - Yan Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|