1
|
Valivand N, Aravand S, Lotfi H, Esfahani AJ, Ahmadpour-Yazdi H, Gheibi N. Propolis: a natural compound with potential as an adjuvant in cancer therapy - a review of signaling pathways. Mol Biol Rep 2024; 51:931. [PMID: 39177837 DOI: 10.1007/s11033-024-09807-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 07/18/2024] [Indexed: 08/24/2024]
Abstract
Propolis is a natural product used in cancer treatment, which is produced by bees via different sources. The chemical composition of Propolis is determined based on the climatic and geographical conditions, as well as harvesting time and method. This compound has been the subject of numerous investigational endeavors due to its expansive therapeutic capacity which includes antibacterial, anti-fungal, anti-inflammatory, anti-oxidant, anti-viral, and anti-cancer effects. The growing incidence rate of different cancers necessitates the need for developing novel preventive and therapeutic strategies. Chemotherapy, radiotherapy, and stem cell therapy have proved effective in cancer treatment, regardless of the adverse events associated with these modalities. Clinical application of natural compounds such as Propolis may confer promise as an adjuvant therapeutic intervention, particularly in certain subpopulations of patients that develop adverse events associated with anticancer regimens. The diverse biologically active compounds of propolis are believed to confer anti-cancer potential by modulation of critical signaling cascades such as caffeic acid phenethyl ester, Galangin, Artepillin C, Chrysin, Quercetin, Caffeic acid, Nymphaeols A and C, Frondoside A, Genistein, p-coumaric acid, and Propolin C. This review article aims to deliver a mechanistic account of anti-cancer effects of propolis and its components. Propolis can prevent angiogenesis by downregulating pathways involving Jun-N terminal kinase, ERK1/2, Akt and NF-ƘB, while counteracting metastatic progression of cancer by inhibiting Wtn2 and FAK, and MAPK and PI3K/AKT signaling pathways. Moreover, propolis or its main components show regulatory effects on cyclin D, CDK2/4/6, and their inhibitors. Additionally, propolis-induced up-regulation of p21 and p27 may result in cell cycle arrest at G2/M or G0/G1. The broad anti-apoptotic effects of propolis are mediated through upregulation of TRAIL, Bax, p53, and downregulation of the ERK1/2 signaling pathway. Considering the growing body of evidence regarding different anti-cancers effects of propolis and its active components, this natural compound could be considered an effective adjuvant therapy aimed at reducing related side effects associated with chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Nassim Valivand
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Sara Aravand
- Student Research Committee, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hajie Lotfi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Azam Janati Esfahani
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Hossein Ahmadpour-Yazdi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Nematollah Gheibi
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran.
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.
| |
Collapse
|
2
|
Wei K, Zhu W, Kou Y, Zheng X, Zheng Y. Advances in Small Molecular Agents against Oral Cancer. Molecules 2024; 29:1594. [PMID: 38611874 PMCID: PMC11013889 DOI: 10.3390/molecules29071594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Oral cancer is a common malignancy with a high mortality rate. Although surgery is the best treatment option for patients with cancer, this approach is ineffective for advanced metastases. Molecular agents are irreplaceable in preventing and treating distant metastases. This review aims to summarise the molecular agents used for the treatment of oral cancer in the last decade and describe their sources and curative effects. These agents are classified into phenols, isothiocyanates, anthraquinones, statins, flavonoids, terpenoids, and steroids. The mechanisms of action of these agents include regulating the expression of cell signalling pathways and related proteases to affect the proliferation, autophagy, migration, apoptosis, and other biological aspects of oral cancer cells. This paper may serve as a reference for subsequent studies on the treatment of oral cancer.
Collapse
Affiliation(s)
- Kai Wei
- Medical School, Pingdingshan University, Pingdingshan 467000, China; (K.W.); (W.Z.); (X.Z.)
| | - Weiru Zhu
- Medical School, Pingdingshan University, Pingdingshan 467000, China; (K.W.); (W.Z.); (X.Z.)
| | - Yanan Kou
- Affiliated Stomatology Hospital, Pingdingshan University, Pingdingshan 467000, China
| | - Xinhua Zheng
- Medical School, Pingdingshan University, Pingdingshan 467000, China; (K.W.); (W.Z.); (X.Z.)
| | - Yunyun Zheng
- Medical School, Pingdingshan University, Pingdingshan 467000, China; (K.W.); (W.Z.); (X.Z.)
| |
Collapse
|
3
|
Pandey P, Khan F, Upadhyay TK, Giri PP. Therapeutic efficacy of caffeic acid phenethyl ester in cancer therapy: An updated review. Chem Biol Drug Des 2023; 102:201-216. [PMID: 36929632 DOI: 10.1111/cbdd.14233] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/28/2023] [Indexed: 03/18/2023]
Abstract
Nowadays, there is a lot of public and scientific interest in using phytochemicals to treat human ailments. Existing cancer medicines still run across obstacles, despite significant advancements in the field. For instance, chemotherapy may result in severe adverse effects, increased drug resistance, and treatment failure. Natural substances that are phytochemically derived provide innovative approaches as potent therapeutic molecules for the treatment of cancer. Bioactive natural compounds may enhance chemotherapy for cancer by increasing the sensitivity of cancer cells to medicines. Propolis has been found to interfere with the viability of cancer cells, among other phytochemicals. Of all the components that make up propolis, caffeic acid phenethyl ester (CAPE) (a flavonoid) has been the subject of the most research. It demonstrates a broad spectrum of therapeutic uses, including antitumor, antimicrobial, antiviral, anti-inflammatory, immunomodulatory, hepatoprotective, neuroprotective, and cardioprotective effects. Studies conducted in vitro and in vivo have demonstrated that CAPE specifically targets genes involved in cell death, cell cycle regulation, angiogenesis, and metastasis. By altering specific signaling cascades, such as the NF-κB signaling pathway, CAPE can limit the proliferation of human cancer cells. This review highlights the research findings demonstrating the anticancer potential of CAPE with a focus on multitargeted molecular and biological implications in various cancer models.
Collapse
Affiliation(s)
- Pratibha Pandey
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida, India
| | - Fahad Khan
- Department of Biotechnology, Noida Institute of Engineering & Technology, Greater Noida, India
| | - Tarun Kumar Upadhyay
- Department of Biotechnology, Parul Institute of Applied Sciences and Centre of Research for Development, Parul University, Vadodara, India
| | - Pavan Prakash Giri
- Department of Chemistry, Noida Institute of Engineering & Technology, Greater Noida, India
| |
Collapse
|
4
|
Shih YH, Chen CC, Kuo YH, Fuh LJ, Lan WC, Wang TH, Chiu KC, Nguyen THV, Hsia SM, Shieh TM. Caffeic Acid Phenethyl Ester and Caffeamide Derivatives Suppress Oral Squamous Cell Carcinoma Cells. Int J Mol Sci 2023; 24:9819. [PMID: 37372967 DOI: 10.3390/ijms24129819] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Caffeic acid phenethyl ester (CAPE) contains antibiotic and anticancer activities. Therefore, we aimed to investigate the anticancer properties and mechanisms of CAPE and caffeamide derivatives in the oral squamous cell carcinoma cell (OSCC) lines SAS and OECM-1. The anti-OSCC effects of CAPE and the caffeamide derivatives (26G, 36C, 36H, 36K, and 36M) were evaluated using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide test. Cell cycle and total reactive oxygen species (ROS) production were analyzed using flow cytometry. The relative protein expression of malignant phenotypes was determined via Western blot analysis. The results showed that 26G and 36M were more cytotoxic than the other compounds in SAS cells. After 26G or 36M treatment for 48 h, cell cycle S phase or G2/M phase arrest was induced, and cellular ROS increased at 24 h, and then decreased at 48 h in both cell lines. The expression levels of cell cycle regulatory and anti-ROS proteins were downregulated. In addition, 26G or 36M treatment inhibited malignant phenotypes through mTOR-ULK1-P62-LC3 autophagic signaling activated by ROS generation. These results showed that 26G and 36M induce cancer cell death by activating autophagy signaling, which is correlated with altered cellular oxidative stress.
Collapse
Affiliation(s)
- Yin-Hwa Shih
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Chieh-Chieh Chen
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 40402, Taiwan
- Department of Biotechnology, Asia University, Taichung 41354, Taiwan
- Chinese Medicine Research Center, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Lih-Jyh Fuh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
- Department of Dentistry, China Medical University Hospital, Taichung City 404332, Taiwan
| | - Wan-Chen Lan
- Department of Healthcare Administration, Asia University, Taichung 41354, Taiwan
| | - Tong-Hong Wang
- Tissue Bank, Chang Gung Memorial Hospital, Taoyuan 33305, Taiwan
| | - Kuo-Chou Chiu
- Division of Oral Diagnosis and Family Dentistry, Tri-Service General Hospital, National Defense Medical Center, Taipei 11490, Taiwan
| | | | - Shih-Min Hsia
- School of Nutrition and Health Sciences, Taipei Medical University, Taipei 110301, Taiwan
- Nutrition Research Center, Taipei Medical University Hospital, Taipei 110301, Taiwan
| | - Tzong-Ming Shieh
- School of Dentistry, China Medical University, Taichung 40402, Taiwan
- Department of Dental Hygiene, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
5
|
Sarkar A, Paul A, Banerjee T, Maji A, Saha S, Bishayee A, Maity TK. Therapeutic advancements in targeting BCL-2 family proteins by epigenetic regulators, natural, and synthetic agents in cancer. Eur J Pharmacol 2023; 944:175588. [PMID: 36791843 DOI: 10.1016/j.ejphar.2023.175588] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/21/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Cancer is amongst the deadliest and most disruptive disorders, having a much higher death rate than other diseases worldwide. Human cancer rates continue to rise, thereby posing the most significant concerns for medical health professionals. In the last two decades, researchers have gone past several milestones in tackling cancer while gaining insight into the role of apoptosis in cancer or targeting various biomarker tools for prognosis and diagnosis. Apoptosis which is still a topic full of complexities, can be controlled considerably by B-cell lymphoma 2 (BCL-2) and its family members. Therefore, targeting proteins of this family to prevent tumorigenesis, is essential to focus on the pharmacological features of the anti-apoptotic and pro-apoptotic members, which will help to develop and manage this disorder. This review deals with the advancements of various epigenetic regulators to target BCL-2 family proteins, including the mechanism of several microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Similarly, a rise in natural and synthetic molecules' research over the last two decades has allowed us to acquire insights into understanding and managing the transcriptional alterations that have led to apoptosis and treating various neoplastic diseases. Furthermore, several inhibitors targeting anti-apoptotic proteins and inducers or activators targeting pro-apoptotic proteins in preclinical and clinical stages have been summarized. Overall, agonistic and antagonistic mechanisms of BCL-2 family proteins conciliated by epigenetic regulators, natural and synthetic agents have proven to be an excellent choice in developing cancer therapeutics.
Collapse
Affiliation(s)
- Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Abhik Paul
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Tanmoy Banerjee
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Avik Maji
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Sanjukta Saha
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, 34211, USA.
| | - Tapan Kumar Maity
- Department of Pharmaceutical Technology, Jadavpur University, West Bengal, Kolkata, 700032, India.
| |
Collapse
|
6
|
Propolis: A Detailed Insight of Its Anticancer Molecular Mechanisms. Pharmaceuticals (Basel) 2023; 16:ph16030450. [PMID: 36986549 PMCID: PMC10059947 DOI: 10.3390/ph16030450] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/10/2023] [Accepted: 03/12/2023] [Indexed: 03/19/2023] Open
Abstract
Cancer is the second most life-threatening disease and has become a global health and economic problem worldwide. Due to the multifactorial nature of cancer, its pathophysiology is not completely understood so far, which makes it hard to treat. The current therapeutic strategies for cancer lack the efficacy due to the emergence of drug resistance and the toxic side effects associated with the treatment. Therefore, the search for more efficient and less toxic cancer treatment strategies is still at the forefront of current research. Propolis is a mixture of resinous compounds containing beeswax and partially digested exudates from plants leaves and buds. Its chemical composition varies widely depending on the bee species, geographic location, plant species, and weather conditions. Since ancient times, propolis has been used in many conditions and aliments for its healing properties. Propolis has well-known therapeutic actions including antioxidative, antimicrobial, anti-inflammatory, and anticancer properties. In recent years, extensive in vitro and in vivo studies have suggested that propolis possesses properties against several types of cancers. The present review highlights the recent progress made on the molecular targets and signaling pathways involved in the anticancer activities of propolis. Propolis exerts anticancer effects primarily by inhibiting cancer cell proliferation, inducing apoptosis through regulating various signaling pathways and arresting the tumor cell cycle, inducing autophagy, epigenetic modulations, and further inhibiting the invasion and metastasis of tumors. Propolis targets numerous signaling pathways associated with cancer therapy, including pathways mediated by p53, β-catenin, ERK1/2, MAPK, and NF-κB. Possible synergistic actions of a combination therapy of propolis with existing chemotherapies are also discussed in this review. Overall, propolis, by acting on diverse mechanisms simultaneously, can be considered to be a promising, multi-targeting, multi-pathways anticancer agent for the treatment of various types of cancers.
Collapse
|
7
|
Yu HJ, Shin JA, Cho SD. Inhibition of focal adhesion kinase/paxillin axis by caffeic acid phenethyl ester restrains aggressive behaviors of head and neck squamous cell carcinoma in vitro. Arch Oral Biol 2023; 146:105611. [PMID: 36577313 DOI: 10.1016/j.archoralbio.2022.105611] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/06/2022] [Accepted: 12/23/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Caffeic acid phenethyl ester (CAPE), one of the components of propolis that is produced by honeybees, reportedly suppresses multiple diseases, including bacterial infection, inflammation, and cancer. We aimed to investigate the inhibitory effects of CAPE on epithelial-mesenchymal transition (EMT) status and aggressive behaviors of human head and neck squamous cell carcinoma (HNSCC) in vitro and the underlying signaling pathway. DESIGN To examine the cell growth and in vitro tumorigenic potential of HNSCC cells, cell viability and soft agar colony formation assays, respectively, were performed. Transwell migration and invasion assays were conducted to monitor HNSCC cells' aggressive behaviors. Western blotting and immunocytochemistry analyses were done to investigate the signaling pathway responsible for relieving EMT progression and HNSCC cell aggressiveness. RESULTS CAPE inhibited the in vitro tumorigenic potential of SNU-1041 cells stimulated by epidermal growth factor and suppressed the migratory and invasive capacities of SNU-1041 cells, irrespective of their cell proliferation state. CAPE was, at least partially, capable of inhibiting EMT progression by upregulating E-cadherin expression, which was accompanied by the reduction of phosphorylated focal adhesion kinase (FAK) and Paxillin. The inhibition of the FAK/Paxillin axis by PF-562271 was sufficient to alleviate the EMT progression through the induction of E-cadherin and aggressive behaviors of SNU-1041 cells. CONCLUSIONS CAPE has a therapeutic potential as an anti-metastatic drug candidate for HNSCC therapy targeting the FAK/Paxillin axis.
Collapse
Affiliation(s)
- Hyun-Ju Yu
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea.
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
8
|
Kaewmuangmoon J, Charoonpatrapong K, Janebodin K. Cytotoxicity of Propolis Extracts obtained using Dichloromethane and Hexane Solvent on Human Salivary Gland Tumor Cell Line. J Int Soc Prev Community Dent 2022; 12:506-512. [PMID: 36532325 PMCID: PMC9753917 DOI: 10.4103/jispcd.jispcd_303_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 04/10/2022] [Accepted: 06/08/2022] [Indexed: 01/25/2023] Open
Abstract
AIM This in vitro study aimed to investigate the effect of propolis extracts from two different solvents on human submandibular salivary gland (HSG) tumor cell line. MATERIALS AND METHODS Propolis was extracted by dichloromethane (DCM) and hexane (HEX). Crude extracts were prepared from 6.25 to 200 µg/mL in Dulbecco's modified eagle medium without serum. Flavonoid and total phenolic contents of crude extracts were measured using a modified colorimetric method. The cytotoxicity was evaluated by 3-[4, 5-dimethylthiazol-2-yl]-2,5 diphenyl-tetrazolium (MTT) assay and lactate dehydrogenase (LDH) release assay. The statistics were analyzed by independent sample t-test. RESULTS Propolis extracts obtained using DCM and HEX exhibited comparable % yield (38.58 and 38.25) and physical characteristics and different amounts of flavonoid (0.439 ± 0.02 and 0.250 ± 0.01 mg catechin/g sample) and total phenolic compounds (3.759 ± 0.03 and 1.618 ± 0.03 mg gallic acid equivalents/g sample). The DCM group at 25, 50, 100, and 200 µg/mL as well as the HEX group at 50, 100, and 200 µg/mL significantly displayed a decrease in % cell viability and an increase in % cytotoxicity, compared with the untreated control group (P < 0.05). The DCM group showed the half-maximal inhibitory concentration (IC50) of MTT (42.93 ± 2.70) and LDH (34.94 ± 0.22). The HEX group showed the IC50 of MTT (61.30 ± 5.39) and LDH (42.32 ± 1.00). Propolis extracts obtained using both DCM and HEX are effective to inhibit HSG viability. CONCLUSION Regarding to the cell morphological observation, MTT and LDH assays, propolis extracts obtained using DCM and HEX exhibited the cytotoxic effect on HSG tumor cell line. Based on our knowledge, this research demonstrates the first preliminary result suggesting propolis as a natural product of choice for salivary gland cancer prevention and therapy.
Collapse
Affiliation(s)
| | | | - Kajohnkiart Janebodin
- Department of Anatomy, Faculty of Dentistry, Mahidol University, Bangkok, Thailand,Address for correspondence: Dr. Kajohnkiart Janebodin, Department of Anatomy, Faculty of Dentistry, Mahidol University, 6 Yothi Road, Phayathai, Ratchathewi, Bangkok 10400, Thailand. E-mail:
| |
Collapse
|
9
|
Anticancer Activity of Propolis and Its Compounds. Nutrients 2021; 13:nu13082594. [PMID: 34444754 PMCID: PMC8399583 DOI: 10.3390/nu13082594] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Propolis is a natural material that honey bees (Apis mellifera) produce from various botanical sources. The therapeutic activity of propolis, including antibacterial, antifungal, and anti-inflammatory effects, have been known since antiquity. Cancer is one of the major burdens of disease worldwide, therefore, numerous studies are being conducted to develop new chemotherapeutic agents and treatments for cancer. Propolis is a rich source of biologically active compounds, which affect numerous signaling pathways regulating crucial cellular processes. The results of the latest research show that propolis can inhibit proliferation, angiogenesis, and metastasis of cancer cells and stimulate apoptosis. Moreover, it may influence the tumor microenvironment and multidrug resistance of cancers. This review briefly summarizes the molecular mechanisms of anticancer activity of propolis and its compounds and highlights the potential benefits of propolis to reduce the side effects of chemotherapy and radiotherapy.
Collapse
|
10
|
Mirzaei S, Gholami MH, Zabolian A, Saleki H, Farahani MV, Hamzehlou S, Far FB, Sharifzadeh SO, Samarghandian S, Khan H, Aref AR, Ashrafizadeh M, Zarrabi A, Sethi G. Caffeic acid and its derivatives as potential modulators of oncogenic molecular pathways: New hope in the fight against cancer. Pharmacol Res 2021; 171:105759. [PMID: 34245864 DOI: 10.1016/j.phrs.2021.105759] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/18/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023]
Abstract
As a phenolic acid compound, caffeic acid (CA) can be isolated from different sources such as tea, wine and coffee. Caffeic acid phenethyl ester (CAPE) is naturally occurring derivative of CA isolated from propolis. This medicinal plant is well-known due to its significant therapeutic impact including its effectiveness as hepatoprotective, neuroprotective and anti-diabetic agent. Among them, anti-tumor activity of CA has attracted much attention, and this potential has been confirmed both in vitro and in vivo. CA can induce apoptosis in cancer cells via enhancing ROS levels and impairing mitochondrial function. Molecular pathways such as PI3K/Akt and AMPK with role in cancer progression, are affected by CA and its derivatives in cancer therapy. CA is advantageous in reducing aggressive behavior of tumors via suppressing metastasis by inhibiting epithelial-to-mesenchymal transition mechanism. Noteworthy, CA and CAPE can promote response of cancer cells to chemotherapy, and sensitize them to chemotherapy-mediated cell death. In order to improve capacity of CA and CAPE in cancer suppression, it has been co-administered with other anti-tumor compounds such as gallic acid and p-coumaric acid. Due to its poor bioavailability, nanocarriers have been developed for enhancing its ability in cancer suppression. These issues have been discussed in the present review with a focus on molecular pathways to pave the way for rapid translation of CA for clinical use.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Saleki
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | | | - Fatemeh Bakhtiari Far
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Seyed Omid Sharifzadeh
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc. 6 Tide Street, Boston, MA, 02210, USA
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Cancer Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
11
|
dos S. Baião D, da Silva DVT, Paschoalin VMF. Beetroot, a Remarkable Vegetable: Its Nitrate and Phytochemical Contents Can be Adjusted in Novel Formulations to Benefit Health and Support Cardiovascular Disease Therapies. Antioxidants (Basel) 2020; 9:E960. [PMID: 33049969 PMCID: PMC7600128 DOI: 10.3390/antiox9100960] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/01/2020] [Accepted: 10/02/2020] [Indexed: 02/06/2023] Open
Abstract
The cardioprotective effects of dietary nitrate from beetroot in healthy and hypertensive individuals are undeniable and irrefutable. Nitrate and nitrate-derived nitrite are precursors for nitric oxide synthesis exhibiting an effect on cardiomyocytes and myocardial ischemia/reperfusion, improving endothelial function, reducing arterial stiffness and stimulating smooth muscle relaxation, decreasing systolic and diastolic blood pressures. Beetroot phytochemicals like betanin, saponins, polyphenols, and organic acids can resist simulated gastrointestinal digestion, raising the hypothesis that the cardioprotective effects of beetroots result from the combination of nitrate/nitrite and bioactive compounds that limit the generation of reactive oxygen species and modulate gene expression. Nitrate and phytochemical concentrations can be adjusted in beet formulations to fulfill requirements for acute or long-term supplementations, enhancing patient adherence to beet intervention. Based on in vitro, in vivo, and clinical trials, beet nitrate and its bioactive phytochemicals are promising as a novel supportive therapy to ameliorate cardiovascular diseases.
Collapse
Affiliation(s)
| | | | - Vania M. F. Paschoalin
- Instituto de Química, Universidade Federal do Rio de Janeiro, Avenida Athos da Silveira Ramos 149, Rio de Janeiro 21941-909, Brazil; (D.d.S.B.); (D.V.T.d.S.)
| |
Collapse
|
12
|
Caffeic Acid Phenethyl Ester (CAPE) Induced Apoptosis in Serous Ovarian Cancer OV7 Cells by Deregulation of BCL2/BAX Genes. Molecules 2020; 25:molecules25153514. [PMID: 32752091 PMCID: PMC7435968 DOI: 10.3390/molecules25153514] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 12/19/2022] Open
Abstract
Ovarian cancer has the worst prognosis among all gynecological cancers. Therefore, it seems reasonable to seek new drugs that may improve the effectiveness of treatment or mitigate the adverse effects of chemotherapy. Caffeic acid phenethyl ester (CAPE) has many beneficial biological properties. The aim of the study was to assess the anticancer properties of CAPE against serum ovarian carcinoma cells. The morphology of the cells was evaluated in H-E staining and in transmission electron microscopy. The cytotoxic and proapoptotic activity of CAPE was investigated by using the XTT-NR-SRB assay, qRT-PCR analysis of BAX/BCL2 expression, and by cytometric evaluation. CAPE causes constriction in OV7 cells, numerous granulomas were observed in the cytoplasm, the cell nuclei were pyknotic. Autophagosomal vacuoles could suggest the occurrence of aponecrosis. CAPE significantly decreased the lysosomal activity and the total synthesis of cellular proteins. CAPE exhibited, dose and time dependent, cytotoxic activity against OV7 serum ovarian cancer cells. In OV7 cells CAPE induced apoptosis via dysregulation of BAX/BCL2 balance, while activated proapoptotic BAX gene expression level was 10 times higher than BCL2.
Collapse
|
13
|
Chiu HF, Han YC, Shen YC, Golovinskaia O, Venkatakrishnan K, Wang CK. Chemopreventive and Chemotherapeutic Effect of Propolis and Its Constituents: A Mini-review. J Cancer Prev 2020; 25:70-78. [PMID: 32647648 PMCID: PMC7337007 DOI: 10.15430/jcp.2020.25.2.70] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/08/2020] [Accepted: 05/20/2020] [Indexed: 12/17/2022] Open
Abstract
Propolis is a bee wax rich in various phytocomponents and traditionally used to treat various ailments. Propolis is reported to possess an array of biological properties including anti-inflammatory, antioxidant, anti-cancer, and anti-diabetic as well as cardioprotective, hepatoprotective, renoprotective, and derma protective activities. A plethora of studies confirmed that propolis is effective against various types of cancer including head and neck, lung, liver, brain (glioma), pancreas, kidney, prostate, skin (melanoma), breast, oral, esophagus, gastric, colorectal, and bladder cancers. However, many researchers have demonstrated that propolis displays potent chemoprotective/chemopreventive or anti-cancer activity against only a few types of cancers like oral, gastrointestinal, dermal (melanoma), breast, and prostate cancers. Therefore, this mini-review only summarizes the chemopreventive/chemotherapeutic activities of propolis and its updated underlying mechanisms. Taken together, propolis displays potent chemoprotective or anti-cancer effect due to the presence of various phytocomponents which contribute to pro-apoptotic, cytotoxic, anti-proliferative (cell cycle arrest), anti-metastatic, anti-invasive, anti-angiogenic and anti-genotoxic or anti-mutagenic properties along with antioxidant, immunomodulatory, and anti-inflammatory functions. Hence, propolis could be used as an adjuvant for treating various cancers along with standard chemotherapeutic drugs. However, many large-scale clinical studies are needed to justify such applications.
Collapse
Affiliation(s)
- Hui-Fang Chiu
- Department of Chinese Medicine, Taichung Hospital
Ministry of Health and Well-being, Taiwan, ROC
| | - Yi-Chun Han
- School of Nutrition, Chung Shan Medical University,
Taiwan, ROC
| | - You-Cheng Shen
- School of Health Diet and Industry Management, Chung Shan
Medical University, Taichung City, Taiwan, ROC
| | - Oksana Golovinskaia
- Faculty of Food Biotechnologies and Engineering, ITMO
University, Saint-Peterburg, Russia
| | | | - Chin-Kun Wang
- School of Nutrition, Chung Shan Medical University,
Taiwan, ROC
| |
Collapse
|
14
|
Hydroethanolic Extract of Solanum paniculatum L. Fruits Modulates ROS and Cytokine in Human Cell Lines. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7240216. [PMID: 32411334 PMCID: PMC7204104 DOI: 10.1155/2020/7240216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/20/2019] [Accepted: 12/07/2019] [Indexed: 11/21/2022]
Abstract
Solanum paniculatum L. or popularly known as “jurubeba” is an herbal medicinal plant. A few studies have investigated its biological effects; however, research aimed at elucidating the redox balance effects from its fruits has not been reported so far. ROS interplays in various fields of medicine such as chemotherapy. Here, we evaluated antioxidant and inflammatory activities of the hydroethanolic extract of Solanum Paniculatum L. (HESPL) fruits in breast cancer cells, as well as its phytochemical profile. The antioxidant profile (carotenoids and phenolic compounds) was obtained by HPLC-DAD-UV and HPLC-APCI-MS. Cancer cell lines and human vein endothelial cells (HUVECs) were cultivated and treated with 1.87-30 μg/mL of HESPL for 24 hrs. Cytotoxicity, oxidative, and inflammation biomarkers were evaluated. The dose of 30 μg/mL of the HESPL extract presented cytotoxicity in the MCF-7 cell line. However, for MDA-MB-231, the cytotoxicity was observed in the dose of 1.87 g/mL. The 1.87 μg/mL and 3.75 μg/mL doses decreased the concentration of IL-6 in MCF-7 cells. In the MDA-MB-231 cells, the HESPL did not decrease the IL-6 concentration; however, in the doses of 15 and 30 μg/mL, an increase in this parameter was observed. The HESPL increased IL-1β concentration in HUVECs. The ROS level in MCF-7 was elevated only at the 30 μg/ml dose. Regarding MDA-MB-231, HESPL promoted increased ROS levels at all doses tested. HUVEC showed no increase in ROS under any dose. HESPL treatment may modulate cytotoxicity, ROS, and cytokine levels due to its phytochemical profile, and it has shown an antioxidant or anti-inflammatory effect.
Collapse
|
15
|
Gajek G, Marciniak B, Lewkowski J, Kontek R. Antagonistic Effects of CAPE (a Component of Propolis) on the Cytotoxicity and Genotoxicity of Irinotecan and SN38 in Human Gastrointestinal Cancer Cells In Vitro. Molecules 2020; 25:molecules25030658. [PMID: 32033066 PMCID: PMC7038052 DOI: 10.3390/molecules25030658] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 01/31/2020] [Accepted: 02/01/2020] [Indexed: 12/20/2022] Open
Abstract
The incidence of gastrointestinal cancers is increasing every year. Irinotecan (CPT-11), a drug used in the treatment of colorectal cancer and gastric cancer, is metabolized by carboxylesterases to an active metabolite, SN-38, which is more cytotoxic. CAPE (caffeic acid phenethyl ester) is an active component of propolis, which has a high antibacterial, antiviral, and antineoplastic potential. This study analyses the impact of CAPE on the cytotoxic (MTT assay), genotoxic (comet assay) and proapoptotic (caspase-3/7 activity) potential of irinotecan and its metabolite SN-38 in cultures of gastrointestinal neoplastic cells (HCT116, HT29, AGS). Cytotoxicity and genotoxicity activities of these compounds were carried out in comparison with human peripheral blood lymphocytes (PBLs) in vitro. The antioxidant potential of CAPE was investigated in relation H2O2-induced oxidative stress in the both neoplastic cells and PBLs. CAPE expressed cytotoxic, genotoxic, and pro-apoptotic activity against AGS, HCT116, and HT29 tumor cells. CAPE, in the presence of different concentrations of irinotecan or SN38, decreased the cytotoxicity, genotoxicity, and pro-apoptotic activity in these cell lines, but it has no such action on normal human peripheral blood lymphocytes.
Collapse
Affiliation(s)
- Gabriela Gajek
- Laboratory of Cytogenetics, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
- Correspondence: ; Tel.: +48-42-635-44-26
| | - Beata Marciniak
- Laboratory of Cytogenetics, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
| | - Jarosław Lewkowski
- Department of Organic Chemistry, Faculty of Chemistry, University of Lodz, 12 Tamka St., 91-403 Lodz, Poland;
| | - Renata Kontek
- Laboratory of Cytogenetics, Institute of Experimental Biology, Faculty of Biology and Environmental Protection, University of Lodz, 12/16 Banacha St., 90-237 Lodz, Poland; (B.M.); (R.K.)
| |
Collapse
|
16
|
Pseudolaric Acid B Induces Growth Inhibition and Caspase-Dependent Apoptosis on Head and Neck Cancer Cell lines through Death Receptor 5. Molecules 2019; 24:molecules24203715. [PMID: 31623058 PMCID: PMC6832876 DOI: 10.3390/molecules24203715] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 12/24/2022] Open
Abstract
Pseudolaric Acid B (PAB), diterpenoid isolated from the root bark of Pseudolarix kaempferi Gordon tree (Pinaceae), exhibits an anti-proliferative and apoptotic activity in various cancer cell lines but to date, the effects of PAB on head and neck cancer (HNC) cell lines remain to be elucidated. In this study, we showed that PAB significantly inhibited the viability and caspase-dependent apoptosis in HN22 cell line. PAB-induced apoptosis is through inducing death receptor 5 (DR5) together with the increase in the expression of cleaved caspase-8. It also inhibited the proliferations and induced apoptosis through DR5 in other three HNC cell lines (HSC3, Ca9.22, and HSC4). Extending our in vitro findings, we found that ethanol extract of Pseudolarix kaempferi (2.5 mg/kg/day) reduced tumor growth in a xenograft model bearing HN22 cell line without any change in body weight. DR5 were also found to be increased in tumors tissue of PAB-treated mice without any apparent histopathological changes in liver or kidney tissues. Taken together, PAB may be a potential lead compound for chemotherapeutic agents against head and neck cancer.
Collapse
|
17
|
Fırat F, Özgül M, Türköz Uluer E, Inan S. Effects of caffeic acid phenethyl ester (CAPE) on angiogenesis, apoptosis and oxidatıve stress ın various cancer cell lines. Biotech Histochem 2019; 94:491-497. [PMID: 30991851 DOI: 10.1080/10520295.2019.1589574] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cancer is a common cause of death worldwide. Approximately 80% of cancer patients use complementary or alternative medicines for treatment. Caffeic acid phenethyl ester (CAPE), the main active component of propolis, exhibits cytotoxic, antiproliferative and anti-cancer effects. Despite its anticancer effects CAPE exhibits no known harmful effects toward normal cells. We investigated the effects of CAPE on angiogenesis, apoptosis and oxidative stress using MDA MB-231, N2a and COLO 320 cell lines and CAPE treatments at 24 and 48 h. A two dimensional cell culture system was used and the findings were evaluated by an indirect immunohistochemical method and H-scores were calculated. CAPE was effective for all three cancer cell lines. After 24 and 48 h, we found a significant decrease in live cells and increased stress in the cells based on e-NOS and i-NOS levels.
Collapse
Affiliation(s)
- F Fırat
- Department of Histology-Embryology, Manisa Celal Bayar University , Uncubozkoy , Manisa , Turkey
| | - M Özgül
- Department of Histology-Embryology, Manisa Celal Bayar University , Uncubozkoy , Manisa , Turkey
| | - E Türköz Uluer
- Department of Histology-Embryology, Manisa Celal Bayar University , Uncubozkoy , Manisa , Turkey
| | - S Inan
- Department of Histology-Embryology, University of Economics , Izmir , Turkey
| |
Collapse
|
18
|
Won DH, Chung SH, Shin JA, Hong KO, Yang IH, Yun JW, Cho SD. Induction of sestrin 2 is associated with fisetin-mediated apoptosis in human head and neck cancer cell lines. J Clin Biochem Nutr 2018; 64:97-105. [PMID: 30936621 PMCID: PMC6436036 DOI: 10.3164/jcbn.18-63] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 07/23/2018] [Indexed: 02/06/2023] Open
Abstract
Fisetin was reported to have an anti-proliferative and apoptotic activity as a novel anti-cancer agent in various cancer cell lines. However, the possible molecular targets for the anti-cancer effect of fisetin in human head and neck cancer (HNCC) have not yet been clarified. In this study, the influence of fisetin on the growth and apoptosis of HNCCs were examined. In HSC3 cells, fisetin treatment reduced the viability and induced apoptosis. Through the results from the screening of the expression profile of apoptosis-related genes, sestrin 2 (SESN2) was functionally involved in fisetin-mediated apoptosis showing the knockdown of SESN2 by siRNA clearly restored fisetin-induced apoptosis. In addition, fisetin reduced the protein expression levels of phospho-mTOR (p-mTOR) and Mcl-1, which are the downstream molecules of SESN2. It also induced PARP cleavage by inducing an increase in the expression levels of SESN2 together with reducing mTOR and Mcl-1 proteins in other three HNCCs (MC3, Ca9.22, and HN22). Taken together, our findings suggest that the anti-cancer effect of fisetin on HNCCs is associated with SESN2/mTOR/Mcl-1 signaling axis.
Collapse
Affiliation(s)
- Dong-Hoon Won
- Department of Biotechnology, Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Shin Hye Chung
- Department of Dental Biomaterials Science, School of Dentistry and Dental Research Institute, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Ji-Ae Shin
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - Kyoung-Ok Hong
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| | - In-Hyoung Yang
- Department of Oral Pathology, School of Dentistry, Institute of Oral Bioscience, Chonbuk National University, Jeonju 54896, Republic of Korea
| | - Jun-Won Yun
- Department of Biotechnology, Catholic University of Korea, 43 Jibong-ro, Bucheon-si, Gyeonggi-do 14662, Republic of Korea
| | - Sung-Dae Cho
- Department of Oral Pathology, School of Dentistry and Dental Research Institute, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul 03080, Republic of Korea
| |
Collapse
|
19
|
Liu GL, Han NZ, Liu SS. Caffeic acid phenethyl ester inhibits the progression of ovarian cancer by regulating NF-κB signaling. Biomed Pharmacother 2018; 99:825-831. [DOI: 10.1016/j.biopha.2018.01.129] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 01/23/2018] [Accepted: 01/28/2018] [Indexed: 11/24/2022] Open
|