1
|
Xie X, Chao R, Mao Y, Wan T, Wang Y, Zhu Y, Xu W, Chen X, Wang Y, Ma Z, Zhang S. Osteoarthritis-like changes in rat temporomandibular joint induced by unilateral anterior large overjet treatment. Sci Rep 2025; 15:1646. [PMID: 39794380 PMCID: PMC11723919 DOI: 10.1038/s41598-024-81306-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/26/2024] [Indexed: 01/13/2025] Open
Abstract
Temporomandibular joint osteoarthritis (TMJOA) is a common degenerative disease that causes chronic pain and joint dysfunction. However, the current understanding of TMJOA pathogenesis is limited and necessitates further research. Animal models are crucial for investigating TMJOA due to the scarcity of clinical samples. Class II malocclusion is an occlusal type highly associated with TMJOA, but it currently lacks appropriate animal models for simulating this malocclusion in research. Therefore, this study develops a new malocclusion model using a unilateral anterior large overjet (UALO) dental device to cause Class II malocclusion characteristics and TMJOA-like pathological alterations in rats. By inducing a posteriorly positioned condyle, the UALO device effectively results in cartilage degradation, subchondral bone loss, condylar volume reduction, and mandibular retrusion. Furthermore, RNA sequencing of condylar cartilages revealed that the oxidative stress of chondrocytes was elevated under the UALO-triggered abnormal mechanical stress. Disruption of antioxidant systems and mitochondrial dysfunction are involved in cartilage degeneration. The current study provides a novel and reliable rat model suitable for TMJOA research and offers insights into the disease's potential mechanistic pathways and molecular targets, contributing to a deeper understanding of TMJOA.
Collapse
Affiliation(s)
- Xinru Xie
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Rui Chao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yi Mao
- State Key Laboratory of Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, National Clinical Research Center for Oral Diseases, Sichuan University, Chengdu, 610041, China
| | - Tianhao Wan
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yexin Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yan Zhu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Weifeng Xu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Xuzhuo Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China
- National Center for Stomatology, Shanghai, 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China
| | - Yong Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.
- National Center for Stomatology, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Zhigui Ma
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.
- National Center for Stomatology, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| | - Shanyong Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, 200011, China.
- National Center for Stomatology, Shanghai, 200011, China.
- National Clinical Research Center for Oral Diseases, Shanghai, 200011, China.
- Shanghai Key Laboratory of Stomatology, Shanghai, 200011, China.
| |
Collapse
|
2
|
Suzuki T, Hosomichi J, Maeda H, Ishida Y, Usumi-Fujita R, Moro M, Jariyatheerawong K, Ono T. Gestational intermittent hypoxia reduces mandibular growth with decreased Sox9 expression and increased Hif1a expression in male offspring rats. Front Physiol 2024; 15:1397262. [PMID: 38919850 PMCID: PMC11196756 DOI: 10.3389/fphys.2024.1397262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 05/03/2024] [Indexed: 06/27/2024] Open
Abstract
Introduction Maternal obstructive sleep apnea (OSA) during pregnancy is the risk factor for impaired fetal growth with low birth weight in the offspring. However, it is unclear whether gestational intermittent hypoxia (IH, a hallmark of maternal OSA) has long-term detrimental consequences on the skeletal development of offspring. This study aimed to investigate postnatal maxillofacial bone growth and cartilage metabolism in male and female offspring that were exposed to gestational IH. Methods Mother rats underwent IH at 20 cycles/h (nadir, 4% O2; peak, 21% O2; 0% CO2) for 8 h per day during gestational days (GD) 7-20, and their male and female offspring were analyzed postnatally at 5 and 10 weeks of age. All male and female offspring were born and raised under normoxic conditions. Results There was no significant difference in whole-body weight and tibial length between the IH male/female offspring and their control counterparts. In contrast, the mandibular condylar length was significantly shorter in the IH male offspring than in the control male offspring at 5 and 10 weeks of age, while there was no significant difference in the female offspring. Real-time polymerase chain reaction (PCR) showed that gestational IH significantly downregulated the mRNA level of SOX9 (a chondrogenesis marker) and upregulated the mRNA level of HIF-1α (a hypoxia-inducible factor marker) in the mandibular condylar cartilage of male offspring, but not in female offspring. Conclusion Gestational IH induced underdeveloped mandibular ramus/condyles and reduced mRNA expression of SOX9, while enhancing mRNA expression of HIF-1α in a sex-dependent manner.
Collapse
Affiliation(s)
- Takumi Suzuki
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Tokyo, Japan
| | - Jun Hosomichi
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Forensic Medicine, Graduate School of Medicine, Tokyo Medical University, Tokyo, Japan
| | - Hideyuki Maeda
- Department of Legal Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuji Ishida
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Risa Usumi-Fujita
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Manaka Moro
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Korkuan Jariyatheerawong
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
- Department of Orthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| |
Collapse
|
3
|
Li R, Kato C, Fujita A, Abe Y, Ogawa T, Ishidori H, Misawa E, Okihara H, Kokai S, Ono T. Effect of Obesity on Masticatory Muscle Activity and Rhythmic Jaw Movements Evoked by Electrical Stimulation of Different Cortical Masticatory Areas. J Clin Med 2023; 12:jcm12113856. [PMID: 37298051 DOI: 10.3390/jcm12113856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/11/2023] [Accepted: 06/02/2023] [Indexed: 06/12/2023] Open
Abstract
This study investigates rhythmic jaw movement (RJM) patterns and masticatory muscle activities during electrical stimulation in two cortical masticatory areas in obese male Zucker rats (OZRs), compared to their counterparts-lean male Zucker rats (LZRs) (seven each). At the age of 10 weeks, electromyographic (EMG) activity of the right anterior digastric muscle (RAD) and masseter muscles, and RJMs were recorded during repetitive intracortical micro-stimulation in the left anterior and posterior parts of the cortical masticatory area (A-area and P-area, respectively). Only P-area-elicited RJMs, which showed a more lateral shift and slower jaw-opening pattern than A-area-elicited RJMs, were affected by obesity. During P-area stimulation, the jaw-opening duration was significantly shorter (p < 0.01) in OZRs (24.3 ms) than LZRs (27.9 ms), the jaw-opening speed was significantly faster (p < 0.05) in OZRs (67.5 mm/s) than LZRs (50.8 mm/s), and the RAD EMG duration was significantly shorter (p < 0.01) in OZRs (5.2 ms) than LZR (6.9 ms). The two groups had no significant difference in the EMG peak-to-peak amplitude and EMG frequency parameters. This study shows that obesity affects the coordinated movement of masticatory components during cortical stimulation. While other factors may be involved, functional change in digastric muscle is partly involved in the mechanism.
Collapse
Affiliation(s)
- Ruixin Li
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 1138510, Japan
| | - Chiho Kato
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 1138510, Japan
| | - Akiyo Fujita
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 1138510, Japan
| | - Yasunori Abe
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 1138510, Japan
| | - Takuya Ogawa
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 1138510, Japan
| | - Hideyuki Ishidori
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 1138510, Japan
| | - Eri Misawa
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 1138510, Japan
| | - Hidemasa Okihara
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 1138510, Japan
| | - Satoshi Kokai
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 1138510, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo 1138510, Japan
| |
Collapse
|
4
|
Hazan-Molina H, Gabet Y, Aizenbud I, Aizenbud N, Aizenbud D. Orthodontic force and extracorporeal shock wave therapy: Assessment of orthodontic tooth movement and bone morphometry in a rat model. Arch Oral Biol 2021; 134:105327. [PMID: 34891101 DOI: 10.1016/j.archoralbio.2021.105327] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 01/12/2023]
Abstract
OBJECTIVE The objective was to investigate the effect of extracorporeal shock wave therapy (ESWT) on the magnitude of orthodontic tooth movement, in a rat model, based on a previously established treatment protocol. DESIGN In conjunction with orthodontic force commencement, rats underwent ESWT. The amount of tooth movement along with different microarchitectural parameters were measured after three weeks by means of microcomputed tomography. In addition, the percentage of cells expressing vascular endothelial growth factor, the number of tartrate-resistant acid phosphatase (TRAP) positive cells/area and blood vessel density were evaluated both for the pressure and tension sides. RESULTS The addition of ESWT to the orthodontic force after three weeks more than doubled the average tooth movement. The addition of ESWT on the pressure side induced a significant decrease in volumetric bone mineral density. Blood vessel density and the number of TRAP positive cells were higher after the application of ESWT. CONCLUSION The induction of ESWT during orthodontic tooth movement in a rat model increases the rate of tooth movement by accelerating bone resorption on the pressure side and possibly enhances bone formation on the tension side.
Collapse
Affiliation(s)
- Hagai Hazan-Molina
- Department of Orthodontics and Craniofacial Anomalies, School of Graduate Dentistry, Rambam Health Care Center and Technion Haifa, Israel.
| | - Yankel Gabet
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Itay Aizenbud
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem 9112102, Israel
| | - Nitzan Aizenbud
- The Institute of Dental Sciences, Faculty of Dental Medicine, Hebrew University, Jerusalem 9112102, Israel
| | - Dror Aizenbud
- Department of Orthodontics and Craniofacial Anomalies, School of Graduate Dentistry, Rambam Health Care Center and Technion Haifa, Israel
| |
Collapse
|
5
|
Aung PT, Kato C, Abe Y, Ogawa T, Ishidori H, Fujita A, Okihara H, Kokai S, Ono T. Functional Analysis of Rhythmic Jaw Movements Evoked by Electrical Stimulation of the Cortical Masticatory Area During Low Occlusal Loading in Growing Rats. Front Physiol 2020; 11:34. [PMID: 32082192 PMCID: PMC7005729 DOI: 10.3389/fphys.2020.00034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 01/16/2020] [Indexed: 11/25/2022] Open
Abstract
The maturation of rhythmic jaw movements (RJMs) and related neuromuscular control has rarely been studied in animals, though this process is essential for regulating the development of stomatognathic functions. Previous studies have shown that occlusal hypofunction during growth alters masticatory performance. However, little is known about patterns of cortically-induced RJMs under conditions of soft-diet feeding during development. The aim of this study is to clarify the effect of low occlusal loading on the pattern of cortically induced RJMs and related neuromuscular responses in growing rats. Sixty-four 2-week-old male albino Wistar rats were randomly divided into two groups and fed on either a normal diet (control) or soft diet (experimental) soon after weaning. At 5, 7, 9, and 11 weeks of age, electromyographic (EMG) activity was recorded from the right masseter and anterior digastric muscles along with corresponding kinematic images in RJMs during repetitive intracortical microstimulation of the left cortical masticatory area (CMA). Rats in both groups showed an increase in gape size and lateral excursion until 9 weeks of age. The vertical jaw movement speed in both groups showed no significant difference between 5 and 7 weeks of age but increased with age from 9 to 11 weeks. Compared to the control group, the average gape size and vertical speed were significantly lower in the experimental group, and the pattern and rhythm of the jaw movement cycle were similar between both groups at each recording age. EMG recordings showed no age-related significant differences in onset latency, duration, and peak-to-peak amplitude. Moreover, we found significantly longer onset latency, smaller peak-to-peak amplitude, and greater drop-off mean and median frequencies in the experimental group than in the control group, while there was no significant difference in the duration between groups. These findings indicate that a lack of enough occlusal function in infancy impedes the development of patterns of RJMs and delays the neuromuscular response from specific stimulation of the CMA.
Collapse
Affiliation(s)
- Phyo Thura Aung
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chiho Kato
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yasunori Abe
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takuya Ogawa
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hideyuki Ishidori
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Akiyo Fujita
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Hidemasa Okihara
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Satoshi Kokai
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takashi Ono
- Department of Orthodontic Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| |
Collapse
|
6
|
Shen Y, Guo S, Chen G, Ding Y, Wu Y, Tian W. Hyperglycemia Induces Osteoclastogenesis and Bone Destruction Through the Activation of Ca 2+/Calmodulin-Dependent Protein Kinase II. Calcif Tissue Int 2019; 104:390-401. [PMID: 30506439 DOI: 10.1007/s00223-018-0499-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 11/24/2018] [Indexed: 02/07/2023]
Abstract
Hyperglycemia induces osteoclastogenesis and bone resorption through complicated, undefined mechanisms. Ca2+/calmodulin-dependent protein kinase II (CaMKII) promotes osteoclastogenesis, and could be activated by hyperglycemia. Here, we investigated whether CaMKII is involved in hyperglycemia-induced osteoclastogenesis and subsequent bone resorption. Osteoclast formation, bone resorption, CaMKII expression and phosphorylation were measured under high glucose in vitro and in streptozotocin-induced hyperglycemia rats with or without CaMKII inhibitor KN93. The results showed that 25 mmol/L high glucose in vitro promoted cathepsin K and tartrate-resistant acid phosphatase expression (p < 0.05) and osteoclast formation (p < 0.01) associated with enhancing β isoform expression (p < 0.05) and CaMKII phosphorylation (p < 0.001). Hyperglycemia promoted the formation of osteoclasts and resorption of trabecular and alveolar bone, and inhibited sizes of femur and mandible associated with enhanced CaMKII phosphorylation (p < 0.001) in rats. All these changes could be alleviated by KN93. These findings imply that CaMKII participates not only in hyperglycemia-induced osteoclastogenesis and subsequent bone resorption, but also in the hyperglycemia-induced developmental inhibition of bone.
Collapse
Affiliation(s)
- Yanxin Shen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Shujuan Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Guoqing Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yi Ding
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China
| | - Yafei Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
- Department of Periodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| | - Weidong Tian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
7
|
Kim BC, Bertin H, Kim HJ, Kang SH, Mercier J, Perrin JP, Corre P, Lee SH. Structural comparison of hemifacial microsomia mandible in different age groups by three-dimensional skeletal unit analysis. J Craniomaxillofac Surg 2018; 46:1875-1882. [DOI: 10.1016/j.jcms.2018.08.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 07/14/2018] [Accepted: 08/14/2018] [Indexed: 02/07/2023] Open
|