1
|
Liao PH, Chuang FH, Wang YY, Wang WC, Su CW, Hsu CW, Yuan SS, Chen YK. Sprouty 4 expression in human oral squamous cell carcinogenesis. J Dent Sci 2023; 18:781-790. [PMID: 37021228 PMCID: PMC10068491 DOI: 10.1016/j.jds.2023.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/20/2023] [Indexed: 02/05/2023] Open
Abstract
Background/purpose Reviewing literature, sprouty 4 (SPRY4) has not been studied in human oral squamous cell carcinomas (OSCCs). The study aimed to examine SPRY4 expression in human oral squamous cell carcinogenesis. Materials and methods A total of 95 OSCCs, 10 OPMDs with malignant transformation (MT), 17 OPMDs without MT, and six normal oral mucosa (NOM) samples were recruited for immunohistochemical staining; three OSCC tissues with normal tissue counterpart NOM were employed for Western blotting. Three human oral cancer cell lines (OCCLs), an oral precancer cell line (dysplastic oral keratinocyte, DOK), and a primary culture of normal oral keratinocytes (HOK) were used for Western blotting; OCCLs and HOK were employed for real-time quantitative reverse transcription-polymerase chain reaction. OCCLs were evaluated in terms of proliferation, migration, and invasion assays. Results SPRY4 protein expression was significantly increased in OSCCs compared with NOM. Protein and mRNA SPRY4 expression in OCCLs were significantly elevated compared with HOK. Significant increases in the degrees of proliferation, migration, and invasion were noted in OCCLs with SPRY4 siRNA transfection compared with those without transfection. SPRY4 protein level was increased in OPMD with MT compared to OPMD without MT. SPRY4 protein was significant increase in DOK in comparison with HOK. SPRY4 protein expression was significantly increased from NOM and OPMD without MT to OSCC. SPRY4 protein expression in OCCLs was significantly enhanced compared with DOK and HOK respectively. Conclusion Our results indicate that SPRY4 expression is possibly involved in human oral squamous cell carcinogenesis.
Collapse
|
2
|
Transcriptome Analysis Reveals the Multiple Functions of pBD2 in IPEC-J2 Cells against E. coli. Int J Mol Sci 2022; 23:ijms23179754. [PMID: 36077151 PMCID: PMC9456188 DOI: 10.3390/ijms23179754] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/19/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Defensins play an important role in fighting bacteria, and are a good candidate for bactericidal agents. However, the function and mechanism of defensins in regulating host responses against bacteria is unclear. In this study, transcriptome analysis was used to study the comprehensive functions of pBD2 in IPEC-J2 cells against E. coli. In total, 230 differentially expressed genes (DEGs) were identified in IPEC-J2 cells between the control and E. coli groups, and were found by KEGG analysis to be involved in many signaling pathways related to immunity. Furthermore, 812 DEGs were observed between E. coli and E. coli +pBD2 groups, involved in the ribosome, oxidative phosphorylation, and certain disease pathways. Among these, 94 overlapping DEGs were in the two DEG groups, and 85 DEGs were reverse expression, which is involved in microRNA in cancer, while PTEN and CDC6 were key genes according to PPI net analysis. The results of qRT-PCR verified those of RNA-seq. The results indicated that pBD2 plays an important role against E. coli by acting on the genes related to immune response, cell cycle, ribosomes, oxidative phosphorylation, etc. The results provide new insights into the potential function and mechanism of pBD2 against E. coli. Meanwhile, this study provides a certain theoretical basis for research and the development of novel peptide drugs.
Collapse
|
3
|
Wang YY, Wang WC, Su CW, Hsu CW, Yuan SS, Chen YK. Expression of Orai1 and STIM1 in human oral squamous cell carcinogenesis. J Dent Sci 2022; 17:78-88. [PMID: 35028023 PMCID: PMC8739746 DOI: 10.1016/j.jds.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/07/2021] [Indexed: 12/21/2022] Open
Abstract
Background/purpose Return of Ca2+ to endoplasmic reticulum is mediated by Orai/STIM-mediated store-operated Ca2+ entry (SOCE) channel. We aimed to investigate Orai1 and STIM1 expressions in human oral carcinogenesis. Materials and methods Sixty-six oral squamous cell carcinomas (OSCCs), 14 oral potentially malignant disorders (OPMD) with moderate-severe oral epithelial dysplasia (OED), 19 OPMD with mild OED, and 14 normal oral mucosa (NOM) samples were subjected to immunohistochemical staining. Two human oral cancer cell lines (OCCLs), an oral premalignant cell line (DOK), and a normal oral keratinocyte culture (HOK) were used for Western blot and real-time quantitative reverse transcription-polymerase chain reaction. OCCLs were evaluated for proliferation, migration, and invasion assays. Results Orai1 and STIM1 protein and mRNA expressions in OSCC were significantly enhanced as compared with normal samples. Protein expressions of Orai1 and STIM1 in OCCLs were significantly enhanced as compared with HOK. Significant decreases in degrees of proliferation, migration and invasion were noted in OCCLs with Orai1 and STIM1 siRNA transfection as compared with those without transfection. Significantly increased Orai1 and STIM1 protein levels were noted in OPMD with moderate-severe OED as compared with those with mild OED. Conclusion Our results indicate that Orai1 and STIM1 overexpression is associated with human oral carcinogenesis.
Collapse
Affiliation(s)
- Yen-Yun Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chen Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Oral Pathology & Maxillofacial Radiology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Oral & Maxillofacial Imaging Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiang-Wei Su
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ching-Wei Hsu
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shyng-Shiou Yuan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Obstetrics and Gynecology and Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yuk-Kwan Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Division of Oral Pathology & Maxillofacial Radiology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Oral & Maxillofacial Imaging Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
4
|
Wang YY, Wang WC, Su CW, Hsu CW, Yuan SS, Chen YK. Overexpression of sprouty 1 protein in human oral squamous cell carcinogenesis. J Dent Sci 2020; 16:21-28. [PMID: 33384774 PMCID: PMC7770302 DOI: 10.1016/j.jds.2020.07.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 07/23/2020] [Indexed: 01/18/2023] Open
Abstract
Abstract Background/purpose Sprouty (SPRY) has four isoforms, SPRY1–4, and its deficiency produces haphazard ‘sprouting’ of tracheal tubules. This study investigated SPRY1 protein expression in human oral potentially malignant disorders (OPMDs) and oral squamous cell carcinomas (OSCCs). Materials and methods 90 OSCCs, 10 OPMDs with malignant transformation (MT), 17 OPMDs without MT, and six normal oral mucosa (NOM) tissue samples were subjected to immunohistochemical staining. Three human oral cancer cell lines (OCCLs), an oral precancer cell line (DOK), and a primary culture of normal oral keratinocytes (HOK) were used for western blotting. Results Significantly increased expression of SPRY1 protein from NOM and OPMD without MT to OSCC was observed. The protein expressions of SPRY1 in OCCLs were significantly enhanced as compared with DOK and HOK. Increased phosphor/total-ERK expression was observed in OCCLs as compared with HOK. A significantly increased SPRY1 protein level was noted in OPMDs with MT as compared with those without MT, in addition to a significant increase in DOK in comparison with HOK. Conclusion Our results indicated that overexpression of SPRY1 protein is potentially associated with human oral squamous cell carcinogenesis.
Collapse
Affiliation(s)
- Yen-Yun Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Wen-Chen Wang
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Oral Pathology & Maxillofacial Radiology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Oral & Maxillofacial Imaging Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chiang-Wei Su
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ching-Wei Hsu
- Division of Oral & Maxillofacial Surgery, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Shyng-Shiou Yuan
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Translational Research Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Obstetrics and Gynecology and Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- Corresponding author. Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan. Fax: +886 7 3210637.
| | - Yuk-Kwan Chen
- School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Oral Pathology & Maxillofacial Radiology, Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Oral & Maxillofacial Imaging Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Corresponding author. School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan. Fax: +886 7 3210637.
| |
Collapse
|
5
|
Wu J, Guo Q, Zhang G, Zhao L, Lv Y, Wang J, Liu J, Shi W. Study on the targeted therapy of oral squamous cell carcinoma with a plasmid expressing PE38KDEL toxin under control of the SERPINB3 promoter. Cancer Med 2020; 9:2213-2222. [PMID: 32017381 PMCID: PMC7064090 DOI: 10.1002/cam4.2880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 12/26/2019] [Accepted: 01/12/2020] [Indexed: 01/30/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) has a poor prognosis and a high risk of recurrence. To improve the efficacy of OSCC therapy, it is of great significance to explore gene therapy for OSCC. The use of specific genes to regulate the targeted expression of suicide genes is a hot topic in gene therapy for cancer. The SERPINB3 gene is highly active in squamous cell carcinoma, but nearly undetectable or present at a low level in normal tissues. This specificity suggests that the SERPINB3 promoter can be used for targeted OSCC therapy. Pseudomonas aeruginosa secretes PE38KDEL, an exotoxin derivative, as a suicide gene used in gene therapy. A SERPINB3 promoter-mediated PE38KDEL expression vector was created. The SERPINB3 gene expression was tested in different cell lines by RT-qPCR and Western blotting, and the SERPINB3 promoter activity was detected by luciferase assay. The SERPINB3 promoter was more active in the TCA8113 cell line than in the other cell lines. The target therapeutic potential of the toxin vector pSERPINB3-PE38KDEL was tested in the SERPINB3-positive TCA8113 cell line, the SERPINB3-negative MG63 cell line, and normal L02 cell line. The SERPINB3 gene was expressed at a high level in TCA8113 cells but a low level in MG63 and L02 cells. Transfection of the pSERPINB3-PE38KDEL plasmid effectively inhibited the proliferation and invasion of TCA8113 cells and induced cell apoptosis, but no significant damage to MG63 and L02 cells was observed. The results of in vitro experiments indicated that the pSERPINB3-PE38KDEL plasmid could be a promising strategy for targeted OSCC gene therapy.
Collapse
Affiliation(s)
- Jiang Wu
- School of StomatologyJiamusi UniversityJiamusiP.R. China
| | - Qiong Guo
- Key Laboratory for Molecular Enzymology & Engineeringthe Ministry of EducationJilin UniversityChangchunP.R. China
| | - Guoliang Zhang
- School of StomatologyJiamusi UniversityJiamusiP.R. China
| | - Liying Zhao
- Key Laboratory for Molecular Enzymology & Engineeringthe Ministry of EducationJilin UniversityChangchunP.R. China
| | - Yvguang Lv
- College of PharmacyJiamusi UniversityJiamusiP.R. China
| | - Jiaqi Wang
- School of StomatologyJiamusi UniversityJiamusiP.R. China
| | - Jiguang Liu
- School of StomatologyJiamusi UniversityJiamusiP.R. China
| | - Wei Shi
- Key Laboratory for Molecular Enzymology & Engineeringthe Ministry of EducationJilin UniversityChangchunP.R. China
| |
Collapse
|
6
|
Samadaian N, Salehipour P, Ayati M, Rakhshani N, Najafi A, Afsharpad M, Yazarlou F, Modarressi MH. A potential clinical significance of DAB2IP and SPRY2 transcript variants in prostate cancer. Pathol Res Pract 2018; 214:2018-2024. [PMID: 30301636 DOI: 10.1016/j.prp.2018.09.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/03/2018] [Accepted: 09/23/2018] [Indexed: 11/18/2022]
Abstract
Deregulation of key signaling pathways is one of the primary phenomena in carcinogenesis. DAB2IP and SPRY2 are regulatory elements, which act as feedback inhibitors of receptor tyrosine kinases signaling in mitogen-activated protein kinase pathway. These elements have also been implicated in the pathophysiology of cancer. Therefore, this study is aimed to investigate the expression of all known splice variants of DAB2IP and SPRY2 in prostate tissue. Fresh Prostate tissue samples (50 prostate cancer/ matched normal tissue and 30 BPH) were collected and total RNA was extracted followed by cDNA synthesis. The expression of DAB2IP and SPRY2 transcript variants were evaluated using RT-PCR and quantitative Real-time PCR. The results indicated significant down-regulation of DAB2IP transcript variant 1 in cancerous tissues compared to paired normal tissues (P = 0.001) as well as SPRY2 transcript variant 2 in cancerous tissues in comparison with the normal counterparts and BPH (P = 0.008 and P = 0.025, respectively). In addition, there was a significant negative correlation between DAB2IP.1 and SPRY2.2 expression with PSA levels in prostate cancer (P = 0.039 ρ =-0.24 and P = 0.045 ρ =-0.3, respectively). Interestingly, the down-regulation of DAB2IP.1 mRNA and SPRY2.2 mRNA was positively correlated in tumor samples (P = 0.002 ρ = 0.434). For the first time, this experiment highlights the deregulation of DAB2IP and SPRY2 transcript variants in human prostate cancer. The present study confirms and extends the previous reports through indicating transcript-specific down-regulation and significant association of DAB2IP and SPRY2 in prostate tumorigenesis.
Collapse
Affiliation(s)
- Niusha Samadaian
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, 1417613151, Iran.
| | - Pouya Salehipour
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, 1417613151, Iran.
| | - Mohsen Ayati
- Department of Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, 1417613151, Iran.
| | - Naser Rakhshani
- Gastrointestinal and liver diseases research center, Firoozgar hospital, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
| | - Ali Najafi
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, 1417613151, Iran.
| | - Mandana Afsharpad
- Cancer Control Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
| | - Fatemeh Yazarlou
- Department of Medical Genetics, Tehran University of Medical Sciences, Tehran, 1417613151, Iran.
| | | |
Collapse
|