1
|
Miao Y, Zhao L, Lei S, Zhao C, Wang Q, Tan C, Peng C, Gong J. Caffeine regulates both osteoclast and osteoblast differentiation via the AKT, NF-κB, and MAPK pathways. Front Pharmacol 2024; 15:1405173. [PMID: 38939843 PMCID: PMC11208461 DOI: 10.3389/fphar.2024.1405173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/24/2024] [Indexed: 06/29/2024] Open
Abstract
Background: Although caffeine generally offers benefits to human health, its impact on bone metabolism remains unclear. Aim and Methods: This study aimed to systematically evaluate the long-term effects of caffeine administration on osteoclasts, osteoblasts, and ovariectomy-induced postmenopausal osteoporosis (OP). Results: Our in vitro findings revealed that 3.125 and 12.5 μg/mL caffeine inhibited RANKL-mediated osteoclastogenesis in RAW 264.7 cells through the MAPK and NF-κB pathways, accompanied by the inactivation of nuclear translocation of nuclear factor NFATc1. Similarly, 3.125 and 12.5 μg/mL of caffeine modulated MC3T3-E1 osteogenesis via the AKT, MAPK, and NF-κB pathways. However, 50 μg/mL of caffeine promoted the phosphorylation of IκBα, P65, JNK, P38, and AKT, followed by the activation of NFATc1 and the inactivation of Runx2 and Osterix, ultimately disrupting the balance between osteoblastogenesis and osteoclastogenesis. In vivo studies showed that gavage with 55.44 mg/kg caffeine inhibited osteoclastogenesis, promoted osteogenesis, and ameliorated bone loss in ovariectomized mice. Conclusion: Conversely, long-term intake of high-dose caffeine (110.88 mg/kg) disrupted osteogenesis activity and promoted osteoclastogenesis, thereby disturbing bone homeostasis. Collectively, these findings suggest that a moderate caffeine intake (approximately 400 mg in humans) can regulate bone homeostasis by influencing both osteoclasts and osteoblasts. However, long-term high-dose caffeine consumption (approximately 800 mg in humans) could have detrimental effects on the skeletal system.
Collapse
Affiliation(s)
- Yue Miao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Medicinal Plants Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan, China
| | - Lei Zhao
- College of Science, Yunnan Agricultural University, Kunming, China
| | - Shuwen Lei
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Chunyan Zhao
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Qiuping Wang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Chao Tan
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
| | - Chunxiu Peng
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming, China
| | - Jiashun Gong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, Yunnan, China
- Agro-Products Processing Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| |
Collapse
|
2
|
Lin X, Peng N, Huang P, Xiong Q, Lin H, Tang C, Tsauo C, Peng L. Potential of quaternized chitins in peri-implantitis treatment: In vitro evaluation of antibacterial, anti-inflammatory, and antioxidant properties. Int J Biol Macromol 2024; 272:132612. [PMID: 38795897 DOI: 10.1016/j.ijbiomac.2024.132612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/03/2024] [Accepted: 05/22/2024] [Indexed: 05/28/2024]
Affiliation(s)
- Xiqiu Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Na Peng
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Peijun Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Qiuchan Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Huishan Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chenxi Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Chialing Tsauo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Sichuan 610041, China
| | - Lin Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
3
|
Teichmann E, Blessing E, Hinz B. Non-Psychoactive Phytocannabinoids Inhibit Inflammation-Related Changes of Human Coronary Artery Smooth Muscle and Endothelial Cells. Cells 2023; 12:2389. [PMID: 37830604 PMCID: PMC10571842 DOI: 10.3390/cells12192389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/08/2023] [Accepted: 09/12/2023] [Indexed: 10/14/2023] Open
Abstract
Atherosclerosis is associated with vascular smooth muscle cell proliferation, chronic vascular inflammation, and leukocyte adhesion. In view of the cardioprotective effects of cannabinoids described in recent years, the present study investigated the impact of the non-psychoactive phytocannabinoids cannabidiol (CBD) and tetrahydrocannabivarin (THCV) on proliferation and migration of human coronary artery smooth muscle cells (HCASMC) and on inflammatory markers in human coronary artery endothelial cells (HCAEC). In HCASMC, CBD and THCV at nontoxic concentrations exhibited inhibitory effects on platelet-derived growth factor-triggered proliferation (CBD) and migration (CBD, THCV). When interleukin (IL)-1β- and lipopolysaccharide (LPS)-stimulated HCAEC were examined, both cannabinoids showed a concentration-dependent decrease in the expression of vascular cell adhesion molecule-1 (VCAM-1), which was mediated independently of classical cannabinoid receptors and was not accompanied by a comparable inhibition of intercellular adhesion molecule-1. Further inhibitor experiments demonstrated that reactive oxygen species, p38 mitogen-activated protein kinase activation, histone deacetylase, and nuclear factor κB (NF-κB) underlie IL-1β- and LPS-induced expression of VCAM-1. In this context, CBD and THCV were shown to inhibit phosphorylation of NF-κB regulators in LPS- but not IL-1β-stimulated HCAEC. Stimulation of HCAEC with IL-1β and LPS was associated with increased adhesion of monocytes, which, however, could not be significantly abolished by CBD and THCV. In summary, the results highlight the potential of the non-psychoactive cannabinoids CBD and THCV to regulate inflammation-related changes in HCASMC and HCAEC. Considering their effect on both cell types studied, further preclinical studies could address the use of CBD and THCV in drug-eluting stents for coronary interventions.
Collapse
Affiliation(s)
| | | | - Burkhard Hinz
- Institute of Pharmacology and Toxicology, Rostock University Medical Center, Schillingallee 70, 18057 Rostock, Germany; (E.T.); (E.B.)
| |
Collapse
|
4
|
Xiao Y, Zhang S, Ye Y, Chen J, Xu Y. Geniposide suppressed OX-LDL-induced osteoblast apoptosis by regulating the NRF2/NF-κB signaling pathway. J Orthop Surg Res 2023; 18:641. [PMID: 37649066 PMCID: PMC10466864 DOI: 10.1186/s13018-023-04125-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Osteoporosis (OP), due to microarchitectural alterations, is associated with decreased bone mass, declined strength, and increased fracture risk. Increased osteoblast apoptosis contributes to the progression of OP. Natural compounds from herbs provide a rich resource for drug screening. Our previous investigation showed that geniposide (GEN), an effective compound from Eucommia ulmoides, could protect against the pathological development of OP induced by cholesterol accumulation. METHODS The rat OP models were duplicated. Dual-energy X-ray absorptiometry, hematoxylin and eosin staining, and immunohistochemistry were used to evaluate bone changes. TUNEL/DAPI staining assays were used for cell apoptosis detection. Protein expression was determined by western blotting assays. RESULTS A high-fat diet promoted OP development in vivo, and OX-LDL stimulated osteoblast apoptosis in vitro. GEN exhibited protective activities against OX-LDL-induced osteoblast apoptosis by increasing the NRF2 pathway and decreasing the NF-κB pathway. PDTC, an NF-κB inhibitor, could further promote the biological functions of GEN. In contrast, ML385, an NRF2 inhibitor, might eliminate GEN's protection. CONCLUSION GEN suppressed OX-LDL-induced osteoblast apoptosis by regulating the NRF2/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Yaosheng Xiao
- Medical College of Soochow University, Suzhou, 215123, China
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Shanshan Zhang
- College of Pharmacy, Gannan Medical University, Ganzhou, 341000, China
| | - Yongjun Ye
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Jincai Chen
- Department of Orthopedics, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Youjia Xu
- Department of Orthopaedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China.
| |
Collapse
|
5
|
Chu Y, Xu Y, Yang W, Chu K, Li S, Guo L. N-acetylcysteine protects human periodontal ligament fibroblasts from pyroptosis and osteogenic differentiation dysfunction through the SIRT1/NF-κB/Caspase-1 signaling pathway. Arch Oral Biol 2023; 148:105642. [PMID: 36773561 DOI: 10.1016/j.archoralbio.2023.105642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023]
Abstract
OBJECTIVE This study was aimed to determine whether N-acetylcysteine (NAC) could inhibit lipopolysaccharides / adenosine triphosphate (ATP)-induced pyroptosis and alleviate the damage of osteogenic differentiation in human periodontal ligament fibroblasts (hPDLFs). Furthermore, this study detected whether NAC acted effectively by modulating the silent information regulator 2 homolog 1 (SIRT1)/ the nuclear factor-κB (NF-κB)/Caspase-1 signaling pathway in hPDLFs. DESIGN Cell Counting Kit-8 assay was employed to determine the appropriate concentration of NAC for the follow-up experiments. To explore the effect and the underlying mechanisms of NAC on pyroptosis and osteogenic differentiation in hPDLFs, intracellular reactive oxygen species levels were detected using 2',7'-Dichlorodihydrofluorescein Diacetate kits. Moreover, SIRT1 inhibitor, SIRT1 activator, NF-κB inhibitor and Caspase-1 inhibitor were applied, the incidence of pyroptosis was detected by flow cytometry, the osteogenic differentiation of hPDLFs was observed using alkaline phosphatase and alizarin red staining, Real-time quantitative polymerase chain reaction and Western Blot were used to detect the expression of relevant factors, the release of interleukin-1β, interleukin-18 and lactate dehydrogenase were detected by Enzyme-linked immunosorbent assay. RESULTS The results demonstrated that NAC protected hPDLFs from lipopolysaccharides/ATP-induced damage, alleviating pyroptosis and osteogenic differentiation dysfunction. Moreover, NAC abrogated the inhibition of SIRT1 activity by scavenging reactive oxygen species, thereby reduced pyroptosis and osteogenic differentiation dysfunction by inhibiting the NF-κB/Caspase-1signaling pathway. CONCLUSION NAC could inhibit pyroptosis and osteogenic differentiation dysfunction of hPDLFs by scavenging reactive oxygen species to regulate the SIRT1/NF-κB/Caspase-1 signaling axis.
Collapse
Affiliation(s)
- Yi Chu
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Department of Oral prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Yao Xu
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Department of Oral prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Wanrong Yang
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Department of Oral prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Kefei Chu
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Department of Oral prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Sihui Li
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Department of Oral prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Ling Guo
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China; Department of Oral prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
6
|
Song Y, Zhang H, Song Z, Yang Y, Zhang S, Wang W. Levan polysaccharide from Erwinia herbicola protects osteoblast cells against lipopolysaccharide-triggered inflammation and oxidative stress through regulation of ChemR23 for prevention of osteoporosis. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
7
|
Tráj P, Herrmann EM, Sebők C, Vörösházi J, Mackei M, Gálfi P, Kemény Á, Neogrády Z, Mátis G. Protective effects of chicoric acid on polyinosinic-polycytidylic acid exposed chicken hepatic cell culture mimicking viral damage and inflammation. Vet Immunol Immunopathol 2022; 250:110427. [DOI: 10.1016/j.vetimm.2022.110427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
|
8
|
Chen Y, Cai Y, Chen C, Li M, Lu L, Yu Z, Wang S, Fang L, Xu S. Aroclor 1254 induced inhibitory effects on osteoblast differentiation in murine MC3T3-E1 cells through oxidative stress. Front Endocrinol (Lausanne) 2022; 13:940624. [PMID: 36353240 PMCID: PMC9637744 DOI: 10.3389/fendo.2022.940624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 10/04/2022] [Indexed: 11/21/2022] Open
Abstract
This study aimed to evaluate the osteotoxicity of polychlorinated biphenyls in murine osteoblastic MC3T3-E1 cells, and to explore the underlying mechanism focused on oxidative stress. The cells were exposed to Aroclor 1254 at concentrations of 2.5-20 µmol/L, and then cell viability, oxidative stress, intracellular calcium concentration, osteocalcin content, and calcium nodules formation were measured. Aroclor 1254 reduced cell viability and induced overproduction of intracellular reactive oxygen species in a dose-dependent manner. Activity of superoxide dismutase was decreased, and malondialdehyde content was promoted after exposure. Moreover, inhibitory effects of Aroclor 1254 on calcium metabolism and mineralization of osteoblasts were observed, as indicated by reduction of the intracellular calcium concentration, osteocalcin content, and modules formation rate. The decreased expression of osteocalcin, alkaline phosphatase, bone sialoprotein, and transient receptor potential vanilloid 6 further confirmed the impairment of Aroclor 1254 on calcium homeostasis and osteoblast differentiation. Addition of the antioxidant N-acetyl-L-cysteine partially restored the inhibitory effects on calcium metabolism and mineralization. In general, Aroclor 1254 exposure reduces calcium homeostasis, osteoblast differentiation and bone formation, and oxidative stress plays a vital role in the underlying molecular mechanism of osteotoxicity.
Collapse
Affiliation(s)
- Yu Chen
- Department of Orthopaedic Surgery (I), Shuguang Hospital, Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Yuwei Cai
- Department of Orthopaedic Surgery (I), Shuguang Hospital, Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Chunxiang Chen
- Department of Neurology, Yueyang Hospital of Integrated Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengting Li
- Department of Neurology, Yueyang Hospital of Integrated Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingdan Lu
- Department of Neurology, Yueyang Hospital of Integrated Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhongxiang Yu
- Department of Orthopaedic Surgery (I), Shuguang Hospital, Shanghai University of Chinese Traditional Medicine, Shanghai, China
| | - Shuqiang Wang
- Department of Orthopaedic Surgery, Yueyang Hospital of Integrated Chinese and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Fang
- Department of Orthopaedic Surgery (I), Shuguang Hospital, Shanghai University of Chinese Traditional Medicine, Shanghai, China
- *Correspondence: Lei Fang, ; Shengming Xu,
| | - Shengming Xu
- Department of Orthopaedic Surgery (I), Shuguang Hospital, Shanghai University of Chinese Traditional Medicine, Shanghai, China
- *Correspondence: Lei Fang, ; Shengming Xu,
| |
Collapse
|
9
|
Owumi SE, Akomolafe AP, Imosemi IO, Odunola OA, Oyelere AK. N-acetyl cysteine co-treatment abates perfluorooctanoic acid-induced reproductive toxicity in male rats. Andrologia 2021; 53:e14037. [PMID: 33724529 DOI: 10.1111/and.14037] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/03/2021] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Perfluorooctanoic acid is a synthetic perfluoroalkyl-persistent in the environment and toxic to humans. N-acetylcysteine is a pro-drug of both amino acid l-cysteine and glutathione-a non-enzymatic antioxidant. N-acetylcysteine serves as an antidote for paracetamol poisoning and alleviates cellular oxidative and inflammatory stressors. We investigated N-acetylcysteine role against reproductive toxicity in male Wistar rats (weight: 140-220 g; 10 weeks old) posed by perfluorooctanoic acid exposure. Randomised rat cohorts were dosed both with perfluorooctanoic acid (5 mg/kg; p.o) or co-dosed with N-acetylcysteine (25 and 50 mg/kg p.o) for 28 days. Sperm physiognomies, biomarkers of testicular function and reproductive hormones, oxidative stress and inflammation were evaluated. Co-treatment with N-acetylcysteine significantly (p < .05) reversed perfluorooctanoic acid-mediated decreases in reproductive enzyme activities, and adverse effect on testosterone, luteinising and follicle-stimulating hormone concentrations. N-acetylcysteine treatment alone, improved sperm motility, count and viability, and reduced total sperm abnormalities. Co-treatment with N-acetylcysteine mitigated perfluorooctanoic acid-induced alterations in sperm function parameters. N-acetylcysteine abated (p < .05) perfluorooctanoic acid-induced oxidative stress in experimental rats testes and epididymis, and generally improved antioxidant enzyme activities and cellular thiol levels. Furthermore, N-acetylcysteine suppressed inflammatory responses and remedied perfluorooctanoic acid-mediated histological injuries in rat. Cooperatively, N-acetylcysteine enhanced reproductive function in perfluorooctanoic acid dosed rats, by lessening oxidative and nitrative stressors and mitigated inflammatory responses in the examined organ.
Collapse
Affiliation(s)
- Solomon E Owumi
- Change-Lab, CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Ayomide P Akomolafe
- Change-Lab, CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Innocent O Imosemi
- Neuroanatomy Research Laboratories, Department of Anatomy, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Oyeronke A Odunola
- Change-Lab, CRMB Laboratory, Department of Biochemistry, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Nigeria
| | - Adegboyega K Oyelere
- School of Biochemistry and Chemistry, Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
10
|
Jariyamana N, Chuveera P, Dewi A, Leelapornpisid W, Ittichaicharoen J, Chattipakorn S, Srisuwan T. Effects of N-acetyl cysteine on mitochondrial ROS, mitochondrial dynamics, and inflammation on lipopolysaccharide-treated human apical papilla cells. Clin Oral Investig 2021; 25:3919-3928. [PMID: 33404763 DOI: 10.1007/s00784-020-03721-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/01/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES N-Acetyl cysteine (NAC), a well-known antioxidant molecule, has been used to modulate oxidative stress and inflammation. However, no studies have examined the effect of NAC in regenerative endodontic procedures (REPs). Therefore, the aim of this study was to investigate the effects of NAC on cell survival, mitochondrial reactive oxygen species (mtROS) production, and inflammatory and mitochondria-related gene expression on lipopolysaccharide (LPS)-treated apical papilla cells (APCs). MATERIALS AND METHODS To assess the NAC concentration, 5 and 10 mM NAC were administered to LPS-treated APCs. Cell proliferation was measured at 24, 48, and 72 h by using AlamarBlue® assay. The 5-mM concentration was further analyzed using different treatment durations: 10 min, 24 h, and the entire study period. The mtROS production was quantified using MitoSOX™ Red and MitoTracker™ Green. RT-PCR was used to detect the expression of IL-6 and TNF-α inflammatory genes and mitochondrial morphology-related genes (Mfn-2/Drp-1 and Bcl-2/Bax) at 6 and 24 h. The statistical significance level was set at 0.05. RESULTS Five-millimolar NAC promoted the highest LPS-treated APC proliferation. The use of 24-h NAC stimulated cell proliferation, whereas the entire-period NAC application (> 48 h) significantly reduced the cell number. The mtROS levels were slightly altered after NAC induction. Ten-minute NAC treatment downregulated the IL-6 and TNF-α expression, whereas the expression of Bcl-2/Bax and Mfn-2/Drp-1 ratios was upregulated at 6 h. CONCLUSIONS Under the LPS-induced inflammatory condition, NAC stimulated APC survival and decreased inflammation. Ten-minute NAC treatment was sufficient to reduce the level of inflammation and maintain the mitochondrial dynamics. CLINICAL RELEVANCE Ten-minute NAC application is sufficient to reduce the level of inflammation and maintain the mitochondrial dynamics. Therefore, NAC may be considered as a potential adjunctive irrigation solution in REPs.
Collapse
Affiliation(s)
- Nutcha Jariyamana
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Patchanee Chuveera
- Department of Family and Community Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Anat Dewi
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Warat Leelapornpisid
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jitjiroj Ittichaicharoen
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Chattipakorn
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Tanida Srisuwan
- Department of Restorative Dentistry and Periodontology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
11
|
Wang X, Jiang M, He X, Zhang B, Peng W, Guo L. N‑acetyl cysteine inhibits the lipopolysaccharide‑induced inflammatory response in bone marrow mesenchymal stem cells by suppressing the TXNIP/NLRP3/IL‑1β signaling pathway. Mol Med Rep 2020; 22:3299-3306. [PMID: 32945495 PMCID: PMC7453581 DOI: 10.3892/mmr.2020.11433] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
N-acetyl cysteine (NAC) has been used to inhibit lipopolysaccharide (LPS)-induced inflammation. However, the molecular mechanism underlying its anti-inflammatory effects remains to be elucidated. The present study aimed to determine the effect of NAC on the LPS-induced inflammatory response in bone marrow mesenchymal stem cells (BMSCs) and elucidate the underlying molecular mechanism. First, BMSCs were stimulated by LPS following pretreatment with NAC (0, 0.1, 0.5, 1 or 2 mM). A Cell Counting Kit 8 assay was used to determine the number of viable cells and 1 mM NAC was selected as the experimental concentration. Then, the secretion of inflammatory factors, including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α was evaluated by enzyme-linked immunosorbent assay. Finally, the expression levels of mRNA and proteins, including apoptosis-associated speck-like protein containing a CARD (ASC), nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), caspase-1, thioredoxin-interacting protein (TXNIP), and thioredoxin (TRX), were evaluated by reverse transcription-quantitative PCR and western blot analysis, respectively. The results demonstrated that the secretion of inflammatory factors, which was increased by the administration of LPS, was reduced by pretreatment with NAC. Furthermore, NAC reduced the expression of ASC, NLRP3, caspase-1 and TXNIP, but enhanced that of TRX. To conclude, NAC had anti-inflammatory effects on LPS-stimulated BMSCs, which was closely associated with the TXNIP/NLRP3/IL-1β signaling pathway. Thus, NAC may be a promising treatment to attenuate the inflammatory response in LPS-induced BMSCs.
Collapse
Affiliation(s)
- Xuemei Wang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Mengyi Jiang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiaoping He
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Bo Zhang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Wei Peng
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ling Guo
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
12
|
Zheng R, Tan Y, Gu M, Kang T, Zhang H, Guo L. N-acetyl cysteine inhibits lipopolysaccharide-mediated synthesis of interleukin-1β and tumor necrosis factor-α in human periodontal ligament fibroblast cells through nuclear factor-kappa B signaling. Medicine (Baltimore) 2019; 98:e17126. [PMID: 31577702 PMCID: PMC6783161 DOI: 10.1097/md.0000000000017126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The aim of this study was to investigate the role of n-acetyl cysteine (NAC) in the lipopolysaccharide (LPS)-mediated induction of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) synthesis by human periodontal ligament fibroblast cells (hPDLFs). In addition, we aimed to determine the involvement of the nuclear factor-kappa B (NF-κB) pathway in any changes in IL-1β and TNF-α expression observed in response to LPS and NAC. METHODS HPDLFs were obtained by primary culture. The culture medium used in this experiment was Dulbecco's Modified Eagle Medium (DMEM low-glucose). Cells were stimulated with various concentrations of NAC or LPS. Cell proliferation was measured at various time-points with the cell Counting Kit 8 (CCK-8) assay. mRNA levels of IL-1β and TNF-α were determined by real-time quantitative polymerase chain reaction (RT-qPCR) analysis. Protein levels of IL-1β and TNF-α were measured by enzyme-linked immunosorbent assay (ELISA). Protein and mRNA expression levels of NF-κB were measured by western blot and RT-qPCR. RESULTS The results showed that LPS treatment in hPDLFs induced mRNA and protein expression of IL-1β, TNF-α, and NF-κB. However, these effects were eliminated by pretreatment with NAC. Pretreatment with both NAC (1 mmol/L) and BAY11-7082 (10 μmol/L) significantly inhibited the NF-κB activity induced by LPS. CONCLUSION NAC inhibits the LPS-mediated synthesis of tumor TNF-α and IL-1β in hPDLFs, through the NF-κB pathway.
Collapse
|
13
|
Zhang Z, Xiong T, Zheng R, Huang J, Guo L. N‑acetyl cysteine protects HUVECs against lipopolysaccharide‑mediated inflammatory reaction by blocking the NF‑κB signaling pathway. Mol Med Rep 2019; 20:4349-4357. [PMID: 31545445 DOI: 10.3892/mmr.2019.10678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/06/2019] [Indexed: 11/05/2022] Open
Abstract
The purpose of the study was to explore the potential protective effects of N‑acetylcysteine (NAC) against lipopolysaccharide (LPS)‑induced inflammatory injury to human umbilical vein endothelial cells (HUVECs). It was also assessed whether the underlying mechanism of this protective effect is mediated via suppression of the nuclear factor‑kappa B (NF‑κB) signaling pathway. Cell viability of HUVECs treated with different concentrations of NAC was assessed using Cell Counting Kit‑8 (CCK‑8) assay. The mRNA expression of inflammatory factors [interleukin‑8 (IL‑8), tumor necrosis factor α (TNF‑α), inducible nitric oxide synthase (iNOS), and intercellular cell adhesive molecule 1 (ICAM‑1)] were assessed using real time semi‑quantitative polymerase chain reaction. Protein expression levels of TNF‑α and IL‑8 were assessed using enzyme‑linked immunosorbent assay. Protein expression levels of ICAM‑1 and the NF‑κB signaling pathway were assessed using western blotting. Nitric reductase method was used to quantify nitric oxide (NO) and iNOS. LPS stimulated the production of TNF‑α, IL‑8, NO, and ICAM‑1 by HUVECs. Moreover, LPS induced activation of the NF‑κB signaling pathway and increased the protein expression of phosphorylated p65. However, pretreatment of HUVECs with NAC significantly attenuated the increase in the expression of inflammatory factors and the level of phosphorylated p65; this indicated that NAC prevented the activation of the NF‑κB signaling pathway. The present findings indicated that NAC protects HUVECs against LPS‑mediated inflammatory reaction and alleviates inflammation. The underlying mechanism is related to the NF‑κB signaling pathway. NAC appears to be a promising agent for prevention and treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Zhenzhen Zhang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ting Xiong
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Rui Zheng
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Jialin Huang
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Ling Guo
- Department of Prosthodontics, Hospital of Stomatology Affiliated to Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|