1
|
Lee CM, Choi Y, Choi SJ, Moon SM, Kim ES, Kim HB, Ham SY, Park JS, Yeom J, Song KH. The Microbiological Characteristics of Acinetobacter Baumannii Associated With Early Mortality in Patients With Bloodstream Infection. Open Forum Infect Dis 2024; 11:ofae348. [PMID: 39006316 PMCID: PMC11245698 DOI: 10.1093/ofid/ofae348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 06/22/2024] [Indexed: 07/16/2024] Open
Abstract
Background Despite rapid deaths resulting from Acinetobacter baumannii bacteremia, the clinical impact of the microbiological characteristics of A baumannii strains on early mortality (EM) is unclear. We aimed to identify the microbiological characteristics of A baumannii strains associated with EM. Methods Clinical information and isolates from patients with A baumannii bacteremia from January 2015 to December 2021 were collected. EM was defined as death within 3 days of the initial positive blood culture, whereas late mortality meant death within 5-30 days. The microbiological characteristics of A baumannii were analyzed using multilocus sequence typing, polymerase chain reactions, and a Galleria mellonella in vivo infection model. Results Among 130 patients, 69 (53.1%) died within 30 days and EM occurred in 38 (55.1% of 30-day deaths). Sequence type 191 (ST191) strain was more prevalent in patients with EM than in 30-day survivors (31.6% vs 6.6%). Regarding virulence genes, bfmS was more frequent (92.1% vs 47.5%), whereas bauA was less frequent (13.2% vs 52.5%) in patients with EM than in 30-day survivors. Higher clinical severity, pneumonia, and ST191 infection were identified as independent risk factors for EM. In the G mellonella infection model, ST191, bfmS+, and bauA- isolates showed higher virulence than non-ST191, bfmS-, and bauA+ isolates, respectively. Conclusions ST191 and bfmS were more frequently found in the EM group. ST191 infection was also an independent risk factor for EM and highly virulent in the in vivo model. Tailored infection control measures based on these characteristics are necessary for A baumannii bacteremia management.
Collapse
Affiliation(s)
- Chan Mi Lee
- Department of Internal Medicine, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yunsang Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Seong Jin Choi
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Song Mi Moon
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Eu Suk Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Hong Bin Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Sin Young Ham
- Department of Internal Medicine, Veterans Health Service Medical Center, Seoul, Republic of Korea
| | - Jeong Su Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jinki Yeom
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Microbiology and Immunology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, Republic of Korea
| | - Kyoung-Ho Song
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| |
Collapse
|
2
|
Amer MA, Wasfi R, Hamed SM. Biosurfactant from Nile Papyrus endophyte with potential antibiofilm activity against global clones of Acinetobacter baumannii. Front Cell Infect Microbiol 2023; 13:1210195. [PMID: 37520441 PMCID: PMC10373939 DOI: 10.3389/fcimb.2023.1210195] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023] Open
Abstract
Acinetobacter baumannii is a leading cause of biofilm-associated infections, particularly catheter-related bloodstream infections (CRBSIs) that are mostly recalcitrant to antimicrobial therapy. One approach to reducing the burden of CRBSIs is inhibiting biofilm formation on catheters. Owing to their prodigious microbial diversity, bacterial endophytes might be a valuable source of biosurfactants, which are known for their great capacity to disperse microbial biofilms. With this in mind, our study aimed to screen bacterial endophytes from plants growing on the banks of the River Nile for the production of powerful biosurfactants capable of reducing the ability of A. baumannii to form biofilms on central venous catheters (CVCs). This was tested on multidrug- and extensive drug-resistant (M/XDR) clinical isolates of A. baumannii that belong to high-risk global clones and on a standard strain of A. baumannii ATCC 19606. The drop collapse and oil dispersion assays were employed in screening the cell-free supernatants (CFS) of all endophytes for biosurfactant activity. Of the 44 bacterial endophytes recovered from 10 plants, the CFS of Bacillus amyloliquefaciens Cp24, isolated from Cyperus papyrus, showed the highest biosurfactant activity. The crude biosurfactant extract of Cp24 showed potent antibacterial activity with minimum inhibitory concentrations (MICs) ranging from 0.78 to 1.56 mg/ml. It also showed significant antibiofilm activity (p-value<0.01). Sub-MICs of the extract could reduce biofilm formation by up to 89.59%, while up to 87.3% of the preformed biofilms were eradicated by the MIC. A significant reduction in biofilm formation on CVCs impregnated with sub-MIC of the extract was demonstrated by CV assay and further confirmed by scanning electron microscopy. This was associated with three log10 reductions in adhered bacteria in the viable count assay. GC-MS analysis of the crude biosurfactant extract revealed the presence of several compounds, such as saturated, unsaturated, and epoxy fatty acids, cyclopeptides, and 3-Benzyl-hexahydro-pyrrolo [1, 2-a] pyrazine-1,4-dione, potentially implicated in the potent biosurfactant and antibiofilm activities. In the present study, we report the isolation of a B. amyloliquefaciens endophyte from the plant C. papyrus that produces a biosurfactant with potent antibiofilm activity against MDR/XDR global clones of A. baumannii. The impregnation of CVCs with the biosurfactant was demonstrated to reduce biofilms and, hence, proposed as a potential strategy for reducing CRBSIs.
Collapse
|
3
|
Sultana S, Parvin R, Parvin MS, Islam MT, Bari ASM, Chowdhury EH. Prevalence of Methicillin and β−Lactamase Resistant Pathogens Associated with Oral and Periodontal Disease of Children in Mymensingh, Bangladesh. Pathogens 2022; 11:pathogens11080890. [PMID: 36015011 PMCID: PMC9414569 DOI: 10.3390/pathogens11080890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Oral and periodontal diseases (OPD) is considered one of the main problems of dentistry worldwide. This study aimed to estimate the prevalence of oral and periodontal pathogenic bacteria along with their antimicrobial resistance pattern in 131 children patients aged between 4–10 years who attended in Mymensingh Medical College Hospital during October 2019 to March 2020. OPD pathogens were identified through isolation, cultural and biochemical properties, and nucleic acid detection. The isolates were subjected to antimicrobial susceptibility to 12 antibiotics commonly used in dentistry. In addition, the isolates were analyzed molecularly for the presence of six virulence and three antibacterial resistance genes. Five pathogens were identified, of which Staphylococcus aureus (S. aureus) (49%) and S. salivarius (46%) were noticed frequently; other bacteria included S. mutans (16.8%), S. sobrinus (0.8%) and L. fermentum (13.7%). The virulence genes—clumping factor A (clfA) was detected in 62.5% isolates of S. aureus, and gelatinase enzyme E (gelE) gene was detected in 5% isolates of S. salivarius, while other virulence genes were not detected. All the tested isolates were multidrug-resistant. The overall prevalence of MDR S. aureus, Streptococcus spp. and L. fermentum was 92.2%, 95.1% and 100%, respectively. It was observed that a high proportion of isolates were found resistant to 5–8 antibiotics. A majority of S. aureus, Streptococcus spp., and L. fermentum isolates tested positive for the β−lactamase resistance genes blaTEM and cfxA, as well as the methicillin resistance gene mecA. Phylogenetically, the resistance genes showed variable genetic character among Bangladeshi bacterial pathogens. In conclusion, S. aureus and S. salivarius were major OPD pathogens in patients attended in Mymensingh Medical College Hospital of Bangladesh, and most were Beta-lactam and methicillin resistant.
Collapse
Affiliation(s)
- Sharmin Sultana
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Rokshana Parvin
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mst. Sonia Parvin
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Taohidul Islam
- Population Medicine and AMR Laboratory, Department of Medicine, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Abu Saleh Mahfuzul Bari
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Emdadul Haque Chowdhury
- Department of Pathology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
- Correspondence:
| |
Collapse
|
4
|
An Outbreak of tet(X6)-Carrying Tigecycline-Resistant Acinetobacter baumannii Isolates with a New Capsular Type at a Hospital in Taiwan. Antibiotics (Basel) 2021; 10:antibiotics10101239. [PMID: 34680819 PMCID: PMC8532604 DOI: 10.3390/antibiotics10101239] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 11/21/2022] Open
Abstract
Dissemination of multidrug-resistant, particularly tigecycline-resistant, Acinetobacter baumannii is of critical importance, as tigecycline is considered a last-line antibiotic. Acquisition of tet(X), a tigecycline-inactivating enzyme mostly found in strains of animal origin, imparts tigecycline resistance to A. baumannii. Herein, we investigated the presence of tet(X) variants among 228 tigecycline-non-susceptible A. baumannii isolates from patients at a Taiwanese hospital via polymerase chain reaction using a newly designed universal primer pair. Seven strains (3%) carrying tet(X)-like genes were subjected to whole genome sequencing, revealing high DNA identity. Phylogenetic analysis based on the PFGE profile clustered the seven strains in a clade, which were thus considered outbreak strains. These strains, which were found to co-harbor the chromosome-encoded tet(X6) and the plasmid-encoded blaOXA-72 genes, showed a distinct genotype with an uncommon sequence type (Oxford ST793/Pasteur ST723) and a new capsular type (KL129). In conclusion, we identified an outbreak clone co-carrying tet(X6) and blaOXA-72 among a group of clinical A. baumannii isolates in Taiwan. To the best of our knowledge, this is the first description of tet(X6) in humans and the first report of a tet(X)-like gene in Taiwan. These findings identify the risk for the spread of tet(X6)-carrying tigecycline- and carbapenem-resistant A. baumannii in human healthcare settings.
Collapse
|
5
|
Presence of non-oral bacteria in the oral cavity. Arch Microbiol 2021; 203:2747-2760. [PMID: 33791834 PMCID: PMC8012020 DOI: 10.1007/s00203-021-02300-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/20/2020] [Accepted: 03/22/2021] [Indexed: 12/30/2022]
Abstract
A homeostatic balance exists between the resident microbiota in the oral cavity and the host. Perturbations of the oral microbiota under particular conditions can contribute to the growth of non-oral pathogens that are hard to kill because of their higher resistance to antimicrobials, raising the probability of treatment failure and reinfection. The presence of these bacteria in the oral cavity has been proven to be associated with several oral diseases such as periodontitis, caries, and gingivitis, and systemic diseases of importance in clinical medicine such as cystic fibrosis, HIV, and rheumatoid arthritis. However, it is still controversial whether these species are merely transient members or unique to the oral cavity. Mutualistic and antagonistic interactions between the oral microbiota and non-oral pathogens can also occur, though the mechanisms used by these bacteria are not clear. Therefore, this review presents an overview of the current knowledge about the presence of non-oral bacteria in the oral cavity, their relationship with systemic and oral diseases, and their interactions with oral bacteria.
Collapse
|
6
|
An insight into the emergence of Acinetobacter baumannii as an oro-dental pathogen and its drug resistance gene profile - An in silico approach. Heliyon 2018; 4:e01051. [PMID: 30603692 PMCID: PMC6304470 DOI: 10.1016/j.heliyon.2018.e01051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/10/2018] [Accepted: 12/12/2018] [Indexed: 11/23/2022] Open
Abstract
Background Acinetobacter baumannii, a potential nosocomial pathogen has stealthily gained entry into the oral cavity. Their association with other pathogens like Pseudomonas aeruginosa in chronic and aggressive periodontitis cases is well documented. The magnitude of problem caused by A . baumannii could be attributed to resistance genes acquired by the organism. Since the microbiome of oral cavity is heterogeneous and complex, the transfer of genes from multidrug resistant A . baumannii may be a serious threat in infection control and management. In view of this fact, the present study aims to categorize and characterize drug resistant genes present in each of the 19 genomes of Acinetobacter Sp. selected for the study. Methods About 19 genome sequences of Acinetobacter spp. with the predominance of different strains of A . baumannii was genotyped using in silico restriction digestion and pulse field gel electrophoresis (PFGE). Further, the prevalence of common drug resistant genes in the genome of various Acinetobacter spp. was recorded using in silico PCR analysis. Results Based on the PFGE pattern, phylogenetic tree was constructed and the genomes were clustered into 6 genotypes. Genotype 4 (n = 8; 42.10%) and 5 (n = 6; 31.57%) were predominant, followed by genotypes 2 (n = 2; 10.52%), 1, 3 and 6 (n = 1; 5.26%). Three species were excluded from the list since they were negative for most of the drug resistant genes tested. Prevalence of drug resistant genes in each of the 16 genomes analysed found oxa-51, ISAba 1 and ADC 1 to be the major genes found in A . baumannii. Acinetobacter spp. belonging to genotypes 4 and 5 were found to harbour 6-10 and 2-8 potential drug resistant genes respectively. Conclusion The present study showed cluster of multi-drug resistant genes in genomes analysed, thus, warranting the need for antibiotic surveillance, alternate therapeutic measures and development of novel antimicrobials. An extensive study on the genes conferring drug resistance in this pathogen will open new avenues for battling the entry and spread of this pathogen in vulnerable patient groups.
Collapse
|