1
|
Sun Y, Zhao Z, Qiao Q, Li S, Yu W, Guan X, Schneider A, Weir MD, Xu HHK, Zhang K, Bai Y. Injectable periodontal ligament stem cell-metformin-calcium phosphate scaffold for bone regeneration and vascularization in rats. Dent Mater 2023; 39:872-885. [PMID: 37574338 DOI: 10.1016/j.dental.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023]
Abstract
OBJECTIVES Injectable and self-setting calcium phosphate cement scaffold (CPC) capable of encapsulating and delivering stem cells and bioactive agents would be highly beneficial for dental and craniofacial repairs. The objectives of this study were to: (1) develop a novel injectable CPC scaffold encapsulating human periodontal ligament stem cells (hPDLSCs) and metformin (Met) for bone engineering; (2) test bone regeneration efficacy in vitro and in vivo. METHODS hPDLSCs were encapsulated in degradable alginate fibers, which were then mixed into CPC paste. Five groups were tested: (1) CPC control; (2) CPC + hPDLSC-fibers + 0% Met (CPC + hPDLSCs + 0%Met); (3) CPC + hPDLSC-fibers + 0.1% Met (CPC + hPDLSCs + 0.1%Met); (4) CPC + hPDLSC-fibers + 0.2% Met (CPC + hPDLSCs + 0.2%Met); (5) CPC + hPDLSC-fibers + 0.4% Met (CPC + hPDLSCs + 0.4%Met). The injectability, mechanical properties, metformin release, and hPDLSC osteogenic differentiation and bone mineral were determined in vitro. A rat cranial defect model was used to evaluate new bone formation. RESULTS The novel construct had good injectability and physical properties. Alginate fibers degraded in 7 days and released hPDLSCs, with 5-fold increase of proliferation (p<0.05). The ALP activity and mineral synthesis of hPDLSCs were increased by Met delivery (p<0.05). Among all groups, CPC+hPDLSCs+ 0.1%Met showed the greatest cell mineralization and osteogenesis, which were 1.5-10 folds those without Met (p<0.05). Compared to CPC control, CPC+hPDLSCs+ 0.1%Met enhanced bone regeneration in rats by 9 folds, and increased vascularization by 3 folds (p<0.05). CONCLUSIONS The novel injectable construct with hPDLSC and Met encapsulation demonstrated excellent efficacy for bone regeneration and vascularization in vivo in an animal model. CPC+hPDLSCs+ 0.1%Met is highly promising for dental and craniofacial applications.
Collapse
Affiliation(s)
- Yaxi Sun
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Zeqing Zhao
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| | - Qingchen Qiao
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Shengnan Li
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Wenting Yu
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Xiuchen Guan
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, USA
| | - Michael D Weir
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Hockin H K Xu
- Biomaterials & Tissue Engineering Division, Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Zheng Z, Tang S, Yang T, Wang X, Ding G. Advances in combined application of dental stem cells and small-molecule drugs in regenerative medicine. Hum Cell 2023; 36:1620-1637. [PMID: 37358734 DOI: 10.1007/s13577-023-00943-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
Teeth are a kind of masticatory organs of special histological origin, unique to vertebrates, playing an important role in chewing, esthetics, and auxiliary pronunciation. In the past decades, with the development of tissue engineering and regenerative medicine, the studies of mesenchymal stem cells (MSCs) gradually attracted the interest of researchers. Accordingly, several types of MSCs have been successively isolated in teeth or teeth-related tissues, including dental pulp stem cells, periodontal ligament stem cells, stem cells from human exfoliated deciduous teeth, dental follicle stem cells, stem cells from apical papilla and gingival mesenchymal stem cells. These dental stem cells (DSCs) are easily accessible, possess excellent stem cell characteristics, such as high proliferation rates and profound immunomodulatory properties. Small-molecule drugs are widely used and show great advantages in clinical practice. As research progressed, small-molecule drugs are found to have various complex effects on the characteristics of DSCs, especially the enhancement of biological characteristics of DSCs, which has gradually become a hot issue in the field of DSCs research. This review summarizes the background, current status, existing problems, future research directions, and prospects of the combination of DSCs with three common small-molecule drugs: aspirin, metformin, and berberine.
Collapse
Affiliation(s)
- Zejun Zheng
- School of Stomatology, Weifang Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Shuai Tang
- School of Stomatology, Weifang Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Tong Yang
- School of Stomatology, Weifang Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Xiaolan Wang
- School of Stomatology, Weifang Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China
| | - Gang Ding
- School of Stomatology, Weifang Medical University, Baotong West Street No. 7166, Weifang, Shandong Province, China.
| |
Collapse
|
3
|
Dai G, Li Y, Zhang M, Lu P, Zhang Y, Wang H, Shi L, Cao M, Shen R, Rui Y. The Regulation of the AMPK/mTOR Axis Mitigates Tendon Stem/Progenitor Cell Senescence and Delays Tendon Aging. Stem Cell Rev Rep 2023:10.1007/s12015-023-10526-0. [PMID: 36917311 DOI: 10.1007/s12015-023-10526-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2023] [Indexed: 03/16/2023]
Abstract
Age-related tendon disorders are closely linked with tendon stem/progenitor cell (TSPC) senescence. However, the underlying mechanisms of TSPC senescence and promising therapeutic strategies for rejuvenation of TSPC senescence remain unclear. In this study, the senescent state of TSPCs increased with age. It was also verified that the AMPK inhibition/mTOR activation is correlated with the senescent state of TSPCs. Furthermore, a low dose of metformin mitigated TSPC senescence and restored senescence-related functions, including proliferation, colony-forming ability, migration ability and tenogenic differentiation ability at the early stage of aging. The protective effects of metformin on TSPCs were regulated through the AMPK/mTOR axis. An in vivo study showed that metformin treatment postpones tendon aging and enhances AMPK phosphorylation but reduces mTOR phosphorylation in a natural aging rat model. Our study revealed new insight and mechanistic exploration of TSPC senescence and proposed a novel therapeutic treatment for age-related tendon disorders by targeting the AMPK/mTOR axis at the early stage of aging.
Collapse
Affiliation(s)
- Guangchun Dai
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,School of Medicine, Southeast University, N0.87 Ding Jia Qiao, 210009, Nanjing, PR China.,Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Yingjuan Li
- Department of Geriatrics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, Nanjing, PR China
| | - Ming Zhang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,School of Medicine, Southeast University, N0.87 Ding Jia Qiao, 210009, Nanjing, PR China.,Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Panpan Lu
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,School of Medicine, Southeast University, N0.87 Ding Jia Qiao, 210009, Nanjing, PR China.,Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Yuanwei Zhang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,School of Medicine, Southeast University, N0.87 Ding Jia Qiao, 210009, Nanjing, PR China.,Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Hao Wang
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,School of Medicine, Southeast University, N0.87 Ding Jia Qiao, 210009, Nanjing, PR China.,Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Liu Shi
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Mumin Cao
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,School of Medicine, Southeast University, N0.87 Ding Jia Qiao, 210009, Nanjing, PR China.,Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Renwang Shen
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China.,School of Medicine, Southeast University, N0.87 Ding Jia Qiao, 210009, Nanjing, PR China.,Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China.,Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China
| | - Yunfeng Rui
- Department of Orthopaedics, School of Medicine, Zhongda Hospital, Southeast University, NO.87 Ding Jia Qiao, 210009, Nanjing, Jiangsu, PR China. .,Trauma Center, Zhongda Hospital, Southeast University, 210009, Nanjing, Jiangsu, PR China. .,Orthopaedic Trauma Institute (OTI), Southeast University, 210009, Nanjing, Jiangsu, PR China. .,China Orthopedic Regenerative Medicine Group, 310000, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
4
|
Song W, Bo X, Ma X, Hou K, Li D, Geng W, Zeng J. Craniomaxillofacial derived bone marrow mesenchymal stem/stromal cells (BMSCs) for craniomaxillofacial bone tissue engineering: A literature review. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2022; 123:e650-e659. [PMID: 35691558 DOI: 10.1016/j.jormas.2022.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/06/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022]
|
5
|
Wen J, Yi Z, Chen Y, Huang J, Mao X, Zhang L, Zeng Y, Cheng Q, Ye W, Liu Z, Liu F, Liu J. Efficacy of metformin therapy in patients with cancer: a meta-analysis of 22 randomised controlled trials. BMC Med 2022; 20:402. [PMID: 36280839 PMCID: PMC9594974 DOI: 10.1186/s12916-022-02599-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 10/10/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND To investigate whether metformin monotherapy or adjunctive therapy improves the prognosis in patients with any type of cancer compared to non-metformin users (age ≥18). METHODS Databases (Medline, Embase, and the Cochrane Central Register of Controlled Trials) and clinical trial registries ( ClinicalTrials.gov ; the World Health Organization International Clinical Trials Registry Platform) were screened for randomized, controlled trials (RCT) reporting at least progression-free survival (PFS) and/or overall survival (OS). Main outcome measures included hazard ratios (HR), and combined HRs and 95% confidence intervals (CI) were calculated using random-effects models. RESULTS Of the 8419 records screened, 22 RCTs comprising 5943 participants were included. Pooled HRs were not statistically significant in both PFS (HR 0.97, 95% CI 0.82-1.15, I2 = 50%) and OS (HR 0.98, 95% CI 0.86-1.13, I2 = 33%) for patients with cancer between the metformin and control groups. Subgroup analyses demonstrated that metformin treatment was associated with a marginally significant improvement in PFS in reproductive system cancers (HR 0.86, 95% CI 0.74-1.00) and a significantly worse PFS in digestive system cancers (HR 1.45, 95% CI 1.03-2.04). The PFS or OS was observed consistently across maintenance dose, diabetes exclusion, median follow-up, risk of bias, and combined antitumoral therapies. CONCLUSION Metformin treatment was not associated with cancer-related mortality in adults compared with placebo or no treatment. However, metformin implied beneficial effects in the PFS of the patients with reproductive system cancers but was related to a worse PFS in digestive system cancers. SYSTEMATIC REVIEW REGISTRATION PROSPERO registration number CRD42022324672.
Collapse
Affiliation(s)
- Jie Wen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhenjie Yi
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuyao Chen
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - Jing Huang
- National Clinical Research Center for Mental Disorders and Department of Psychiatry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Xueyi Mao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yu Zeng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Wenrui Ye
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Jingfang Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Hypothalamic Pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
6
|
Calabrese EJ, Agathokleous E, Dhawan G, Kapoor R, Calabrese V. Human dental pulp stem cells and hormesis. Ageing Res Rev 2022; 73:101540. [PMID: 34890824 DOI: 10.1016/j.arr.2021.101540] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 11/26/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023]
Abstract
This paper represents the first assessment of hormetic dose responses by human dental pulp stem cells (hDPSCs) with particular emphasis on cell renewal (proliferation) and differentiation. Hormetic dose responses were commonly reported in this model, encompassing a broad range of chemicals, including principally pharmaceuticals (e.g., metformin and artemisinin), dietary supplements/extracts from medicinal plants (e.g., berberine, N-acetyl-L-cysteine, and ginsenoside Rg1) and endogenous agents (e.g., ATP, TNF-α). The paper assesses mechanistic foundations of the hDPSCs hormetic dose responses for both cell proliferation and cell differentiation, study design considerations, and therapeutic implications.
Collapse
|
7
|
Calabrese EJ, Agathokleous E, Kapoor R, Dhawan G, Kozumbo WJ, Calabrese V. Metformin-enhances resilience via hormesis. Ageing Res Rev 2021; 71:101418. [PMID: 34365027 DOI: 10.1016/j.arr.2021.101418] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/23/2021] [Accepted: 08/02/2021] [Indexed: 02/06/2023]
Abstract
The present paper demonstrates that metformin (MF) induced a broad spectrum of hormetic biphasic dose responses in a wide range of experimental studies, affecting multiple organ systems, cell types, and endpoints enhancing resilience to chemical stresses in preconditioning and co-current exposure protocols. Detailed mechanistic evaluations indicate that MF-induced hormetic-adaptive responses are mediated often via the activation of adenosine monophosphate-activated kinase (AMPK) protein and its subsequent upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2). Hormesis-induced protective responses by MF are largely mediated via a vast and highly integrated anti-inflammatory molecular network that enhances longevity and delays the onset and slows the progression of neurodegenerative and other chronic diseases.
Collapse
|
8
|
Calabrese EJ. Human periodontal ligament stem cells and hormesis: Enhancing cell renewal and cell differentiation. Pharmacol Res 2021; 173:105914. [PMID: 34563662 DOI: 10.1016/j.phrs.2021.105914] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 12/19/2022]
Abstract
This paper provides a detailed assessment of hormetic dose responses by human periodontal ligament stem cells (hPDLSCs). Hormetic dose responses were induced by a broad range of chemicals, including dietary supplements (e.g., curcumin, ginsenoside Rg1), pharmaceutical/commercial substances (e.g., metformin) and endogenous agents (e.g., periostin, TNF-α) for cell proliferation/viability and osteogenic/adipocyte differentiation. This paper clarifies underlying mechanistic foundations of the hPLDSC hormetic dose responses and explores their therapeutic implications. Emerging evidence based on assessments of multiple types of stem cells shows hormetic dose responses to be widespread, reflecting considerable generality and a highly conserved evolutionary trait.
Collapse
Affiliation(s)
- Edward J Calabrese
- School of Public Health and Health Sciences, Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, Unites States.
| |
Collapse
|
9
|
Boreak N, Khayrat NMA, Shami AO, Zaylaee HJM, Hanbashi AA, Souri SA, Otayf HM, Bakri RE, Ajeely MEM, Bakri AEH, Jafer MA, Raj AT, Baeshen HA, Patil S. Metformin pre-conditioning enhances the angiogenic ability of the secretome of dental pulp stem cells. Saudi Pharm J 2021; 29:908-913. [PMID: 34408549 PMCID: PMC8363104 DOI: 10.1016/j.jsps.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 07/04/2021] [Indexed: 01/20/2023] Open
Abstract
The aim of the present study was to assess the influence of metformin on the angiogenic ability of secretomes from dental pulp stem cells. The stem cells were obtained from the dental pulp (DPSCs) (n = 3) using the explant culture method. We treated the DPSCs with different concentrations of metformin and assessed the expression of the angiogenesis-related genes. We also tested the angiogenic effect of the secretomes on the yolk sac membrane of the chick embryos by counting the quaternary blood vessel formations on the yolk sac membrane. We found that metformin treatment enhanced the angiogenic potential of the stem cell secretome in a dose-dependent manner. This was evidenced by the increase in the quaternary blood vessel formations in the yolk sac membrane with lower to higher concentrations of metformin. Pre-treatment with metformin modulates the angiogenic potential of the stem cell-conditioned media in a dose-dependent manner. The augmentation of the angiogenic potential of the DPSCs can aid regeneration, especially in scenarios requiring the regeneration of vacuoles.
Collapse
Affiliation(s)
- Nezar Boreak
- Department of Restorative Dental Sciences, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | | | | | | | | | | | | | | | | | | | - Mohammed Abdurabu Jafer
- Department of Preventive Dental Science, College of Dentistry, Jazan University, Saudi Arabia
- Department of Health Promotion, Maastricht University/CAPHRI, The Netherlands
| | - A. Thirumal Raj
- Department of Oral Pathology and Microbiology, Sri Venkateswara Dental College and Hospital, Chennai, India
| | - Hosam Ali Baeshen
- Department of Orthodontics, College of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
- Corresponding author.
| |
Collapse
|
10
|
Qu L, Dubey N, Ribeiro JS, Bordini EAF, Ferreira JA, Xu J, Castilho RM, Bottino MC. Metformin-loaded nanospheres-laden photocrosslinkable gelatin hydrogel for bone tissue engineering. J Mech Behav Biomed Mater 2021; 116:104293. [PMID: 33588247 PMCID: PMC8275125 DOI: 10.1016/j.jmbbm.2020.104293] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 11/28/2022]
Abstract
The aim of this investigation was to engineer metformin (MF)-loaded mesoporous silica nanospheres (MSNs)-laden gelatin methacryloyl (GelMA) photocrosslinkable hydrogels and test their effects on the mechanical properties, swelling ratio, drug release, cytocompatibility, and osteogenic differentiation of stem cells from human exfoliated deciduous teeth (SHEDs). As-received and carboxylated MSNs (MSNs-COOH) were characterized by scanning and transmission electron microscopies (SEM and TEM), as well as Fourier-transform infrared spectroscopy (FTIR) prior to hydrogel modification. MF-MSNs-COOH were obtained by loading MF into MSNs at a 1:1 mass ratio. Upon MSNs-COOH laden-hydrogels fabrication, the mechanical properties, swelling ratio and MF release were evaluated. SHEDs were seeded on the hydrogels and cytocompatibility was examined. The effects of the MF-MSNs-COOH/GelMA on the osteogenic differentiation of SHEDs were measured by ALP activity, Alizarin Red assay, and Real-time PCR. Statistics were performed using one-way ANOVA (α = 0.05). Morphological (SEM and TEM) analyses of pristine and carboxylated MSNs revealed a mean particle size of 200 nm and 218 nm, respectively. Importantly, an intrinsic nanoporous structure was noticed. Incorporation of MSNs-COOH at 1.5 mg/mL in GelMA led to the highest compressive modulus and swelling ratio. The addition of MSNs-COOH (up to 3 mg/mL) in GelMA did not impact cell viability. The presence of MF in MSNs-COOH/GelMA significantly promoted cell proliferation. Significant upregulation of osteogenic-related genes (except OCN) were seen for modified (MSNs-COOH and MF-MSNs-COOH) hydrogels when compared to GelMA. Altogether, the engineered MF-MSNs-COOH/GelMA shows great promise in craniomaxillofacial applications as an injectable, cell-free and bioactive therapeutics for bone regeneration.
Collapse
Affiliation(s)
- Liu Qu
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Endodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Nileshkumar Dubey
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Juliana S Ribeiro
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Restorative Dentistry, School of Dentistry, Federal University of Pelotas, Pelotas, RS, Brazil
| | - Ester A F Bordini
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA; Department of Dental Materials and Prosthodontics, School of Dentistry, São Paulo State University, Araraquara, São Paulo, Brazil
| | - Jessica A Ferreira
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Jinping Xu
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| | - Rogerio M Castilho
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Marco C Bottino
- Department of Cariology, Restorative Sciences and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
11
|
Metformin-Induced MicroRNA-34a-3p Downregulation Alleviates Senescence in Human Dental Pulp Stem Cells by Targeting CAB39 through the AMPK/mTOR Signaling Pathway. Stem Cells Int 2021; 2021:6616240. [PMID: 33505470 PMCID: PMC7806386 DOI: 10.1155/2021/6616240] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/02/2020] [Accepted: 12/16/2020] [Indexed: 12/15/2022] Open
Abstract
Dental pulp stem cells (DPSCs) are ideal seed cells for the regeneration of dental tissues. However, DPSC senescence restricts its clinical applications. Metformin (Met), a common prescription drug for type 2 diabetes, is thought to influence the aging process. This study is aimed at determining the effects of metformin on DPSC senescence. Young and aging DPSCs were isolated from freshly extracted human teeth. Flow cytometry confirmed that DPSCs expressed characteristic surface antigen markers of mesenchymal stem cells (MSCs). Cell Counting Kit-8 (CCK-8) assay showed that a concentration of 100 μM metformin produced the highest increase in the proliferation of DPSCs. Metformin inhibited senescence in DPSCs as evidenced by senescence-associated β-galactosidase (SA-β-gal) staining and the expression levels of senescence-associated proteins. Additionally, metformin significantly suppressed microRNA-34a-3p (miR-34a-3p) expression, elevated calcium-binding protein 39 (CAB39) expression, and activated the AMP-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) signaling pathway. Dual-luciferase reporter assay confirmed that CAB39 is a direct target for miR-34a-3p. Furthermore, transfection of miR-34a-3p mimics promoted the senescence of DPSCs, while metformin treatment or Lenti-CAB39 transfection inhibited cellular senescence. In conclusion, these results indicated that metformin could alleviate the senescence of DPSCs by downregulating miR-34a-3p and upregulating CAB39 through the AMPK/mTOR signaling pathway. This study elucidates on the inhibitory effect of metformin on DPSC senescence and its potential as a therapeutic target for senescence treatment.
Collapse
|
12
|
Jiang LL, Liu L. Effect of metformin on stem cells: Molecular mechanism and clinical prospect. World J Stem Cells 2020; 12:1455-1473. [PMID: 33505595 PMCID: PMC7789120 DOI: 10.4252/wjsc.v12.i12.1455] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/28/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023] Open
Abstract
Metformin is a first-line medication for type II diabetes. Numerous studies have shown that metformin not only has hypoglycemic effects, but also modulates many physiological and pathological processes ranging from aging and cancer to fracture healing. During these different physiological activities and pathological changes, stem cells usually play a core role. Thus, many studies have investigated the effects of metformin on stem cells. Metformin affects cell differentiation and has promising applications in stem cell medicine. It exerts anti-aging effects and can be applied to gerontology and regenerative medicine. The potential anti-cancer stem cell effect of metformin indicates that it can be an adjuvant therapy for cancers. Furthermore, metformin has beneficial effects against many other diseases including cardiovascular and autoimmune diseases. In this review, we summarize the effects of metformin on stem cells and provide an overview of its molecular mechanisms and clinical prospects.
Collapse
Affiliation(s)
- Lin-Li Jiang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
13
|
Zhang R, Liang Q, Kang W, Ge S. Metformin facilitates the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells in vitro. Cell Biol Int 2020; 44:70-79. [PMID: 31293042 DOI: 10.1002/cbin.11202] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 07/07/2019] [Indexed: 01/24/2023]
Abstract
Periodontitis is one of the main causes of tooth loss and has been confirmed as the sixth complication of diabetes. Metformin promotes the osteogenic differentiation of stem cells. Periodontal ligament stem cells (PDLSCs) are the best candidate stem cells for periodontal tissue regeneration. Herein, we aimed to identify the effects of metformin on the proliferation, migration, and osteogenic differentiation of PDLSCs in vitro. PDLSCs were isolated by limiting dilution, and their characteristics were assessed by colony formation assay and flow cytometry. Cell counting and migration assays were used to investigate the effects of metformin on proliferation and migration. The osteogenic differentiation ability of PDLSCs was detected by alkaline phosphatase (ALP) activity and Alizarin Red S staining. Gene and protein levels of osteogenesis-related markers were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analysis, respectively. Metformin treatment at 10 μM did not affect PDLSC proliferation, while at 50 and 100 μM, metformin time-dependently enhanced PDLSC proliferation and significantly increased cell numbers after 5 and 7 days of stimulation (P < 0.05). In addition, 50 μM metformin exhibited a maximal effect on migration, ALP activity, and mineral deposition (P < 0.05). Furthermore, 50 μM metformin significantly upregulated the gene expression levels of ALP, BSP, OPN, OCN, and Runx2 and the protein expression of ALP and Runx2 (P < 0.05). In summary, our study confirms that metformin facilitates the proliferation, migration, and osteogenic differentiation of PDLSCs in vitro and could be used as a new strategy for periodontal tissue regeneration.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan, 250012, China
- Department of Endodontics, Hospital of stomatology, Zunyi medical University, No. 149 Dalian Road, Zunyi, 563000, China
| | - Qianyu Liang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan, 250012, China
| | - Wenyan Kang
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan, 250012, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, No. 44-1 Wenhua Road West, Jinan, 250012, China
| |
Collapse
|
14
|
Jia L, Xiong Y, Zhang W, Ma X, Xu X. Metformin promotes osteogenic differentiation and protects against oxidative stress-induced damage in periodontal ligament stem cells via activation of the Akt/Nrf2 signaling pathway. Exp Cell Res 2019; 386:111717. [PMID: 31715142 DOI: 10.1016/j.yexcr.2019.111717] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
Periodontal ligament stem cell (PDLSC)-based tissue engineering is an important method for regenerating lost bone in periodontitis. Maintaining or enhancing the osteogenic differentiation of PDLSCs, as well as enhancing the resistance of PDLSCs to oxidative stress, is necessary in this process. As a common hypoglycemic drug, metformin has been reported to have multiple effects on cell functions. This study found that low concentrations of metformin did not affect cell proliferation but did inhibit adipogenic differentiation and promote osteogenic differentiation of PDLSCs. This positive effect was associated with activation of Akt signaling by metformin. Moreover, applying metformin as either a pretreatment or co-treatment could reduce the amount of reactive oxygen species, enhance antioxidant capacity, and rescue the cell viability and osteogenic differentiation that were negatively affected by H2O2-induced oxidative stress in PDLSCs. In addition, metformin was found to activate the Nrf2 signaling pathway in PDLSCs, and knockdown of Nrf2 by siRNA impaired the protective effect of metformin. Taken together, these results indicate that metformin not only promotes osteogenic differentiation of PDLSCs, but also protects PDLSCs against oxidative stress-induced damage, suggesting that metformin could be potentially useful in promoting PDLSC-based bone regeneration in the treatment of periodontitis.
Collapse
Affiliation(s)
- Linglu Jia
- School of Stomatology, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Yixuan Xiong
- School of Stomatology, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Wenjing Zhang
- School of Stomatology, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China
| | - Xiaoni Ma
- School of Stomatology, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China.
| | - Xin Xu
- School of Stomatology, Shandong University, Jinan, China; Shandong Provincial Key Laboratory of Oral Tissue Regeneration, Jinan, China.
| |
Collapse
|
15
|
Zhao Z, Liu J, Schneider A, Gao X, Ren K, Weir MD, Zhang N, Zhang K, Zhang L, Bai Y, Xu HHK. Human periodontal ligament stem cell seeding on calcium phosphate cement scaffold delivering metformin for bone tissue engineering. J Dent 2019; 91:103220. [PMID: 31678476 DOI: 10.1016/j.jdent.2019.103220] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 10/16/2019] [Accepted: 10/24/2019] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVES (1) develop a CPC-metformin scaffold with hPDLSC seeding for bone tissue engineering; and (2) investigate the effects of CPC-metformin scaffold on hPDLSC proliferation, osteogenic differentiation and bone matrix mineralization for the first time. METHODS hPDLSCs were harvested from extracted teeth. CPC scaffolds (with or without metformin) were prepared. Three groups were tested: (1) control group (growth medium); (2) osteogenic group (osteogenic medium); (3) metformin + osteogenic group (CPC-metformin scaffold, cultured in osteogenic medium). hPDLSC viability, osteogenic differentiation and mineralization were measured. SEM was used to examine cell morphology. RESULTS After culturing for 14 days, all three groups demonstrated excellent hPDLSC attachment and viability, as shown in live-dead staining, CCK-8 assay, and SEM examinations. The osteogenic group had 3-8 folds, 5 folds and 6 folds of increases in osteogenic gene expressions, ALP activity and mineral synthesis, compared to control group. Furthermore, the metformin + osteogenic group had 3-fold to 4-fold increases over those of the osteogenic group in osteogenic gene expressions, ALP activity and mineral synthesis. CONCLUSIONS hPDLSCs were demonstrated to be a potent cell source for bone engineering. The novel CPC-metformin-hPDLSC construct is highly promising to enhance bone repair and regeneration efficacy in dental, craniofacial and orthopedic applications.
Collapse
Affiliation(s)
- Zeqing Zhao
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China; Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Jin Liu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Key Laboratory of Shanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, China
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD 21201, USA
| | - Xianling Gao
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Department of Endodontics, Guanghua School and Hospital of Stomatology & Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, China
| | - Ke Ren
- Department of Neural and Pain Sciences, School of Dentistry, & Program in Neuroscience, University of Maryland, Baltimore, MD 21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA
| | - Ning Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Ke Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Li Zhang
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China
| | - Yuxing Bai
- Department of Orthodontics, School of Stomatology, Capital Medical University, Beijing, China.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland Dental School, Baltimore, MD 21201, USA; Member, Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
16
|
Wang S, Xia Y, Ma T, Weir MD, Ren K, Reynolds MA, Shu Y, Cheng L, Schneider A, Xu HHK. Novel metformin-containing resin promotes odontogenic differentiation and mineral synthesis of dental pulp stem cells. Drug Deliv Transl Res 2019; 9:85-96. [PMID: 30465181 DOI: 10.1007/s13346-018-00600-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This represents the first report on the development of metformin-containing dental resins. The objectives were to use the resin as a carrier to deliver metformin locally to stimulate dental cells for dental tissue regeneration and to investigate the effects on odontogenic differentiation of dental pulp stem cells (DPSCs) and mineral synthesis. Metformin was incorporated into a resin at 20% by mass as a model system. DPSC proliferation attaching on resins was evaluated. Dentin sialophosphoprotein (DSPP), dentin matrix phosphoprotein 1 (DMP-1), alkaline phosphatase (ALP), and runt-related transcription factor 2 (Runx2) genes expressions were measured. ALP activity and alizarin red staining (ARS) of mineral synthesis by the DPSCs on resins were determined. DPSCs on metformin-containing resin proliferated well (mean ± SD; n = 6), and the number of cells increased by 4-fold from 1 to 14 days (p > 0.1). DSPP, ALP, and DMP-1 gene expressions of DPSCs on metformin resin were much higher than DPSCs on control resin without metformin (p < 0.05). ALP activity of metformin group was 70% higher than that without metformin at 14 days (p < 0.05). Mineral synthesis by DPSCs on metformin-containing resin at 21 days was 9-fold that without metformin (p < 0.05). A novel metformin-containing resin was developed, achieving substantial enhancement of odontoblastic differentiation of DPSCs and greater mineral synthesis. The metformin resin is promising for deep cavities and perforated cavities to stimulate DPSCs for tertiary dentin formation, for tooth root coatings with metformin release for periodontal regeneration, and for root canal fillings with apical lesions to stimulate bone regeneration.
Collapse
Affiliation(s)
- Suping Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral, Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Yang Xia
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, 210029, China
| | - Tao Ma
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Michael D Weir
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Ke Ren
- Department of Neural and Pain Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Mark A Reynolds
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA
| | - Yan Shu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, MD, 21201, USA.,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral, Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China. .,Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA.
| | - Abraham Schneider
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA. .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| | - Hockin H K Xu
- Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA. .,Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. .,Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA.
| |
Collapse
|
17
|
Ku JK, Hong I, Lee BK, Yun PY, Lee JK. Dental alloplastic bone substitutes currently available in Korea. J Korean Assoc Oral Maxillofac Surg 2019; 45:51-67. [PMID: 31106133 PMCID: PMC6502751 DOI: 10.5125/jkaoms.2019.45.2.51] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/24/2022] Open
Abstract
As dental implant surgery and bone grafts were widely operated in Korean dentist, many bone substitutes are commercially available, currently. For commercially used in Korea, all bone substitutes are firstly evaluated by the Ministry of Health and Welfare (MOHW) for safety and efficacy of the product. After being priced, classified, and registration by the Health Insurance Review and Assessment Service (HIRA), the post-application management is obligatory for the manufacturer (or representative importer) to receive a certificate of Good Manufacturing Practice by Ministry of Food and Drug Safety. Currently, bone substitutes are broadly classified into C group (bone union and fracture fixation), T group (human tissue), L group (general and dental material) and non-insurance material group in MOHW notification No. 2018-248. Among them, bone substitutes classified as dental materials (L7) are divided as xenograft and alloplastic bone graft. The purpose of this paper is to analyze alloplastic bone substitutes of 37 products in MOHW notification No. 2018-248 and to evaluate the reference level based on the ISI Web of Knowledge, PubMed, EMBASE (1980–2019), Cochrane Database, and Google Scholar using the criteria of registered or trademarked product name.
Collapse
Affiliation(s)
- Jeong-Kui Ku
- Department of Oral and Maxillofacial Surgery, Asan Medical Center, Seoul, Korea.,Department of Oral and Maxillofacial Surgery, Section of Dentistry, Armed Forces Capital Hospital, Seongnam, Korea
| | - Inseok Hong
- Department of Oral and Maxillofacial Surgery, School of Dentistry and Institute of Oral Bioscience, Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Chonbuk National University, Jeonju, Korea
| | - Bu-Kyu Lee
- Department of Oral and Maxillofacial Surgery, Asan Medical Center, Seoul, Korea
| | - Pil-Young Yun
- Department of Oral and Maxillofacial Surgery, Section of Dentistry, Armed Forces Capital Hospital, Seongnam, Korea
| | - Jeong Keun Lee
- Department of Oral and Maxillofacial Surgery, Institute of Oral Health Science, Ajou University School of Medicine, Suwon, Korea
| |
Collapse
|
18
|
Yagci BS, Odabas S, Aksoy EA. Development of metformin chain extended polyurethane elastomers as bone regenerative films. Eur J Pharm Sci 2019; 131:84-92. [DOI: 10.1016/j.ejps.2019.02.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 02/06/2019] [Accepted: 02/07/2019] [Indexed: 12/23/2022]
|
19
|
Talebi Ardakani MR, Hajizadeh F, Yadegari Z. Comparison of Attachment and Proliferation of Human Gingival Fibroblasts on Different Collagen Membranes. Ann Maxillofac Surg 2018; 8:218-223. [PMID: 30693235 PMCID: PMC6327806 DOI: 10.4103/ams.ams_150_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background and Aim Human gingival fibroblasts cultured on collagen membrane as an alternative treatment method used in tissue regeneration can lead to improved results in root coverage. The aim of this study was to evaluate the human gingival fibroblast proliferation and adhesion cultured on three types of collagen membranes. Materials and Methods In this in vitro study, first-line human gingival fibroblast cells (HGF1-RT1) prepared and cultured on three membranes, including porcine pericardium (PP) (Jason, Botiss dental), human pericardium (HP) (Regen, Faravardeh Baft Iranian), and glutaraldehyde cross-linked (GC) (BioMend Extend, Zimmer Dental). Cell survival was assessed using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) after 24, 48, and 72 h and 7 days. Furthermore, morphology and adhesion of cells on the membrane were evaluated after 1 and 7 days by electron microscopy (scanning electron microscopy [SEM]). Statistical analysis was performed using two-way ANOVA with a significance level of 0.05. Results Based on the results of MTT, cell survival on HP and PP membranes after 7 days significantly increased (P < 0.001), but for the GC membrane, it was reduced after 7 days (P = 0.031). Cell survival on HP and PP membranes did not differ (P = 1) and was more than GC (P < 0.001). SEM images showed that the adhesion of cells was better on HP and PP membranes than GC. Conclusion The results of this study showed that natural collagen membranes (HP and PP) similarly support proliferation and adhesion of gingival fibroblasts. Survival and adhesion of gingival fibroblasts on cross-linked collagen membrane was less than two other membranes.
Collapse
Affiliation(s)
| | - Farhad Hajizadeh
- Department of Periodontology, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Yadegari
- Department of Dental Biomaterials, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|