1
|
Manuschai J, Sotozono M, Takenaka S, Kornsombut N, Takahashi R, Saito R, Nagata R, Ida T, Noiri Y. In Vitro Inhibitory Effect of Silver Diamine Fluoride Combined with Potassium Iodide against Mixed-Species Biofilm Formation on Human Root Dentin. Antibiotics (Basel) 2024; 13:743. [PMID: 39200043 PMCID: PMC11350696 DOI: 10.3390/antibiotics13080743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/01/2024] Open
Abstract
Applying a saturated potassium iodide (KI) solution immediately after silver diamine fluoride (SDF) application may affect the inhibitory effects of SDF on biofilm formation. This study compared the efficacy of 38% SDF with and without KI on preventing mixed-species biofilm formation on human root dentin surfaces and assessed ion incorporation into root dentin. The biofilms, composed of Streptococcus mutans, Lactobacillus rhamnosus, and Actinomyces naeslundii, were grown on specimen surfaces treated with either SDF or SDF + KI. After 24 h, the biofilms were evaluated using scanning electron microscopy, live/dead staining, adenosine triphosphate (ATP) assays, colony-forming unit (CFU) counts, and quantitative polymerase chain reaction. A Mann-Whitney U test was used to compare the results between the groups. Ion incorporation was assessed using an electron probe microanalyzer. The relative ATP content in the SDF + KI group was significantly higher than that in the SDF group (p < 0.05). However, biofilm morphology and the logarithmic reduction in CFUs and bacterial DNA were comparable across the groups. The SDF + KI treatment resulted in less silver and fluoride ion incorporation than that yielded by SDF alone. The inhibitory effects of SDF and SDF + KI on mixed-species biofilm formation were almost equivalent, although KI application affected the ion incorporation.
Collapse
Affiliation(s)
- Jutharat Manuschai
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
- Department of Conservative Dentistry, Faculty of Dentistry, Prince of Songkla University, Hat Yai 90112, Songkhla, Thailand
| | - Maki Sotozono
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| | - Shoji Takenaka
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| | - Niraya Kornsombut
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| | - Ryouhei Takahashi
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| | - Rui Saito
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| | - Ryoko Nagata
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| | - Takako Ida
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| | - Yuichiro Noiri
- Division of Cariology, Operative Dentistry and Endodontics, Faculty of Dentistry, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8514, Japan; (J.M.)
| |
Collapse
|
2
|
Colomba C, Garbo V, Boncori G, Albano C, Bagarello S, Condemi A, Giordano S, Canduscio LA, Gallo C, Parrinello G, Cascio A. Streptococcus mitis as a New Emerging Pathogen in Pediatric Age: Case Report and Systematic Review. Antibiotics (Basel) 2023; 12:1222. [PMID: 37508318 PMCID: PMC10376791 DOI: 10.3390/antibiotics12071222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Streptococcus mitis, a normal inhabitant of the oral cavity, is a member of Viridans Group Streptococci (VGS). Generally recognized as a causative agent of invasive diseases in immunocompromised patients, S. mitis is considered to have low pathogenic potential in immunocompetent individuals. We present a rare case of sinusitis complicated by meningitis and cerebral sino-venous thrombosis (CSVT) caused by S. mitis in a previously healthy 12-year-old boy with poor oral health status. With the aim of understanding the real pathogenic role of this microorganism, an extensive review of the literature about invasive diseases due to S. mitis in pediatric patients was performed. Our data define the critical role of this microorganism in invasive infections, especially in immunocompetent children and in the presence of apparently harmful conditions such as sinusitis and caries. Attention should be paid to the choice of therapy because of VGS's emerging antimicrobial resistance patterns.
Collapse
Affiliation(s)
- Claudia Colomba
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
- Division of Pediatric Infectious Diseases, "G. Di Cristina" Hospital, ARNAS Civico Di Cristina Benfratelli, 90100 Palermo, Italy
| | - Valeria Garbo
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Giovanni Boncori
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Chiara Albano
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Sara Bagarello
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Anna Condemi
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Salvatore Giordano
- Division of Pediatric Infectious Diseases, "G. Di Cristina" Hospital, ARNAS Civico Di Cristina Benfratelli, 90100 Palermo, Italy
| | - Laura A Canduscio
- Division of Pediatric Infectious Diseases, "G. Di Cristina" Hospital, ARNAS Civico Di Cristina Benfratelli, 90100 Palermo, Italy
| | - Cristina Gallo
- Division of Radiology, "G. Di Cristina" Hospital, ARNAS Civico Di Cristina Benfratelli, 90100 Palermo, Italy
| | - Gaspare Parrinello
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
| | - Antonio Cascio
- Department of Health Promotion, Maternal and Infant Care, Internal Medicine and Medical Specialties, University of Palermo, 90100 Palermo, Italy
- Infectious and Tropical Diseases Unit, AOU Policlinico "P. Giaccone", 90100 Palermo, Italy
| |
Collapse
|
3
|
Chen L, Qin Y, Lin Y, Du M, Li Y, Fan M. Salivary levels of five microorganisms of root caries in nursing home elderly: a preliminary investigation. BMC Oral Health 2023; 23:355. [PMID: 37270529 DOI: 10.1186/s12903-023-02953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/07/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND Streptococcus, Bifidobacteria, Lactobacillus and Actinomyces are acidogenic aciduria that may be associated with root caries (RC). The aim of the study was to analyze Streptococcus mutans (S. mutans), Streptococcus sobrinus (S. sobrinus), Bifidobacterium spp., Lactobacillus spp. and Actinomyces naeslundii (A. naeslundii) in the saliva of nursing home elderly, to assess the correlation between bacterial composition and RC for five putative catiogenic organisms. METHODS In this study, we collected 43 saliva samples and divided into two groups: the root caries group (RCG, n = 21) and the caries-free group (CFG, n = 22). Bacterial DNA was extracted from the saliva samples. The presence and abundance of the five microorganisms were detected by Quantitative real-time PCR (qPCR). Spearman correlation test was performed to evaluate the relationship between the numbers of root decayed filled surfaces (RDFS) and root caries index (RCI) and salivary levels of the bacteria. RESULTS The salivary levels of S. mutans, S. sobrinus, Bifidobacterium spp. and Lactobacillus spp. were significantly higher in RCG than in CFG (p < 0.05). RDFS and RCI (RDFS/RCI) were positively associated with salivary levels of S. mutans, S. sobrinus and Bifidobacterium spp. (r = 0.658/0.635, r = 0.465/0.420 and r = 0.407/0.406, respectively). No significant differences in presence and amounts of A. naeslundii was observed between the two groups (p > 0.05). CONCLUSION S. mutans, S. sobrinus and Bifidobacterium spp. in saliva appear to be associated with RC in the elderly. Taken together, the findings indicate that specific salivary bacteria may be involved in the progression of RC.
Collapse
Affiliation(s)
- Lin Chen
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Avenue, Guangzhou, China
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Microbiology Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuandong Qin
- Stomatological Hospital, School of Stomatology, Southern Medical University, No. 366, South of Jiangnan Avenue, Guangzhou, China
| | - Yuhong Lin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Microbiology Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Endodontics, Yantai Stomatological Hospital Affiliated to Binzhou Medical College, Yantai, China
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Microbiology Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuhong Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Microbiology Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mingwen Fan
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei- MOST) & Key Laboratory of Oral Microbiology Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- First dental hospital , Jean Han University, Wuhan, China.
| |
Collapse
|
4
|
Manchanda S, Cheung BPK, Lee GHM, Lo ECM, Yiu CKY. Quantitative analysis of salivary and biofilm bacteria associated with cavitated and non-cavitated carious lesions in pre-school children. Arch Oral Biol 2023; 146:105607. [PMID: 36543040 DOI: 10.1016/j.archoralbio.2022.105607] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 12/08/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To quantify and compare Streptococcus mutans (S. mutans) and Lactobacillus fermentum (L. fermentum) in saliva and biofilm of caries-free children to those with cavitated and non-cavitated lesions. DESIGN One hundred and thirty-five 3-4 years old children were grouped (n = 45 in each group) according to their caries status: Clinical examination was done by a calibrated examiner. Biofilm and saliva were collected to quantify the microorganisms using qRT-PCR. The decayed-missing-filled surfaces (dmfs) was calculated by adding the number of decayed (ICDAS-II score 3-6), filled (ICDAS-II score 7 and 8) and missing (ICDAS-II score 9) surfaces due to caries. The correlation between the bacterial amounts and the number of carious surfaces was evaluated using Spearman's correlation coefficient. The levels and proportions of the microorganisms were compared using the Kruskal-Wallis test at an α-level of 0.05. RESULTS The quantity of S. mutans and L. fermentum was significantly higher in saliva and biofilm of children with cavitated lesions, followed by those with non-cavitated lesions and the lowest in caries-free children. Also, salivary and biofilm S. mutans, along with biofilm L. fermentum levels, significantly correlated with the number of non-cavitated surfaces; while salivary and biofilm S. mutans and L. fermentum levels significantly correlated with the number of cavitated surfaces. Additionally, dmfs scores significantly correlated with the salivary and biofilm S. mutans and L. fermentum levels. CONCLUSIONS S. mutans and L. fermentum in saliva and biofilm samples are associated with caries lesion severity.
Collapse
Affiliation(s)
- Sheetal Manchanda
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - B P K Cheung
- Centralized Research Laboratories, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Gillian H M Lee
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Edward C M Lo
- Dental Public Health, Faculty of Dentistry, The University of Hong Kong, Hong Kong
| | - Cynthia K Y Yiu
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong.
| |
Collapse
|
5
|
Salivary microbiome diversity in Chinese children with various caries states. Clin Oral Investig 2023; 27:773-785. [PMID: 36538092 DOI: 10.1007/s00784-022-04825-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 02/06/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE This study aimed to explore oral microbiome diversity among children with various caries status based on dmft scores. METHODS A total of 320 children aged 3-5 years were recruited, with 66 healthy children and 254 children affected by dental caries. According to dmft scores, these children with dental caries were classified as "mild group" (dmft score 1-3), "moderate group" (dmft score 4-6), and "severe group" (dmft score 7-14). Healthy children with dmft score of 0 served as control group. Illumina MiSeq sequencing was employed to analyze all salivary samples collected from these children. RESULTS The salivary microbial diversity among four groups was similar (p > 0.05). A total of five bacterial genera were highly abundant in the control group including Bergeyella, Acidimicrobiales, Acidimicrobiia, Halomonas, and Blautia (p < 0.05). For mild group, there were nine bacterial genera identified to be predominant: Porphyromonadaceae, Porphyromonas, Enterobacteriales, Enterobacteriaceae, Weissella, Leuconostocaceae, Alphaproteobacteria, Stenotrophomonas, and Rhizobiales (p < 0.05). Only one genus, Aggregatibacter was predominant in moderate group (p < 0.05). There were six bacterial genera (Alistipes, Lachnoclostridium, Escherichia-Shigella, Romboutsia, Sphingomonadales, and Denitratisoma) enriched in severe group (p < 0.05). CONCLUSION Oral microbial profile was different in children with various caries status based on dmft scores. CLINICAL RELEVANCE The results might be beneficial to deeply understand microbiological diversity of early childhood caries (ECC) at various stages and inform effective strategies for ECC prevention.
Collapse
|
6
|
Duque C, Chrisostomo DA, Souza ACA, de Almeida Braga GP, Dos Santos VR, Caiaffa KS, Pereira JA, de Oliveira WC, de Aguiar Ribeiro A, Parisotto TM. Understanding the Predictive Potential of the Oral Microbiome in the Development and Progression of Early Childhood Caries. Curr Pediatr Rev 2023; 19:121-138. [PMID: 35959611 DOI: 10.2174/1573396318666220811124848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 03/24/2022] [Accepted: 04/22/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Early childhood caries (ECC) is the most common chronic disease in young children and a public health problem worldwide. It is characterized by the presence of atypical and fast progressive caries lesions. The aggressive form of ECC, severe early childhood caries (S-ECC), can lead to the destruction of the whole crown of most of the deciduous teeth and cause pain and sepsis, affecting the child's quality of life. Although the multifactorial etiology of ECC is known, including social, environmental, behavioral, and genetic determinants, there is a consensus that this disease is driven by an imbalance between the oral microbiome and host, or dysbiosis, mediated by high sugar consumption and poor oral hygiene. Knowledge of the microbiome in healthy and caries status is crucial for risk monitoring, prevention, and development of therapies to revert dysbiosis and restore oral health. Molecular biology tools, including next-generation sequencing methods and proteomic approaches, have led to the discovery of new species and microbial biomarkers that could reveal potential risk profiles for the development of ECC and new targets for anti-caries therapies. This narrative review summarized some general aspects of ECC, such as definition, epidemiology, and etiology, the influence of oral microbiota in the development and progression of ECC based on the current evidence from genomics, transcriptomic, proteomic, and metabolomic studies and the effect of antimicrobial intervention on oral microbiota associated with ECC. CONCLUSION The evaluation of genetic and proteomic markers represents a promising approach to predict the risk of ECC before its clinical manifestation and plan efficient therapeutic interventions for ECC in its initial stages, avoiding irreversible dental cavitation.
Collapse
Affiliation(s)
- Cristiane Duque
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Daniela Alvim Chrisostomo
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Amanda Caselato Andolfatto Souza
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Gabriela Pacheco de Almeida Braga
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Vanessa Rodrigues Dos Santos
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Karina Sampaio Caiaffa
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Jesse Augusto Pereira
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Warlley Campos de Oliveira
- Department of Preventive and Restorative Dentistry, Araçatuba Dental School, State University of São Paulo (UNESP), Araçatuba, Brazil
| | - Apoena de Aguiar Ribeiro
- Division of Diagnostic Sciences, University of North Carolina at Chapel Hill - Adams School of Dentistry, Chapel Hill, North Carolina, United State
| | - Thaís Manzano Parisotto
- Laboratory of Clinical and Molecular Microbiology, São Francisco University, Bragança Paulista, Brazil
| |
Collapse
|
7
|
Abstract
The oral cavity is an unique ecosystem formed by different structures, tissues, and a complex microbial community formed by hundreds of different species of bacteria, fungi, viruses, phages, and the candidate phyla radiation (CPR) group, all living in symbiosis with healthy individuals. In an opposite state, dental caries is a biofilm-mediated dysbiosis that involves changes in the core microbiome composition and function, which leads to the demineralization of tooth tissues due to the fermentation of dietary carbohydrates, producing acid by select oral bacteria. The cariogenic biofilm is typically characterized by bacterial species with the ability of adhering to the saliva-coated tooth surface, production of exopolysaccharides-rich matrix (which will limit the diffusion of acidic products of carbohydrate fermentation), and the ability of surviving in this acidic environment. Besides years of research and dental treatment, dental caries remains the most common chronic disease in children worldwide. This article aims to bring an insightful discussion about important questions that remain unanswered in the Cariology and Oral Microbiology fields, to move Science forward, characterize the interrelationships of these communities, and understand mechanistic functions between microorganisms and the host, therefore leading to translatable knowledge that benefits the provision of care to our pediatric patients.
Collapse
Affiliation(s)
- Apoena Aguiar Ribeiro
- Division of Diagnostic Sciences, Adams School of Dentistry, University of North Carolina, Chapel Hill, USA
- CONTACT Apoena Aguiar Ribeiro Division of Diagnostic Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, 150 Dental Circle, Chapel Hill, CB 7450, USA
| | - Bruce J. Paster
- Department of Microbiology, The Forsyth Institute, Cambridge, Massachusetts, USA
- Department of Oral Medicine, Infection and Immunity, Harvard School of Dental Medicine, Boston, USA
| |
Collapse
|
8
|
Analysis of a Pediatric Dental School Patient Population Revealed Increasing Trends of Limited English Proficiency (LEP) Patients: Implications for Pediatric Dental Public Health and Access to Care. Pediatr Rep 2022; 14:276-287. [PMID: 35736657 PMCID: PMC9229504 DOI: 10.3390/pediatric14020035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 01/25/2023] Open
Abstract
Based upon the lack of current information regarding the pediatric patient population at UNLV-SDM, the overall goal of this project was to analyze the demographic characteristics of this population, indicators for socioeconomic status (SES), such as enrollment in Medicaid, and other barriers to healthcare access, such as non-English/non-Spanish languages spoken. Using an Institutional Review Board (IRB)-approved protocol, this analysis revealed the percentage of minority pediatric patients between 2010 and 2020 increased among African Americans, Asian Americans, and mixed or multiracial patients, while decreasing among Hispanics. Analysis of the Limited English Proficiency (LEP) patients and guardians found an overall increase in the number of non-English/non-Spanish languages spoken from n = 4 in 2010 to n = 21 in 2020 with no significant changes in Medicaid/CHIP enrollment identified between 2010 and 2020 (76.7%, 77.9%, p = 0.988). These data suggest the composition of the patient population has experienced significant shifts over time, with more patients of mixed racial backgrounds and increased numbers of Limited English Proficiency (non-English/non-Spanish foreign languages) spoken. These data may suggest there is an increased need for multilingual health materials, training, and translators for pediatric oral health within this population.
Collapse
|
9
|
Sabella FM, de Feiria SNB, Ribeiro ADA, Theodoro LH, Höfling JF, Parisotto TM, Duque C. Exploring the Interplay Between Oral Diseases, Microbiome, and Chronic Diseases Driven by Metabolic Dysfunction in Childhood. FRONTIERS IN DENTAL MEDICINE 2021. [DOI: 10.3389/fdmed.2021.718441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oral childhood diseases, such as caries and gingivitis, have much more than a local impact on the dentition and tooth surrounding tissues, which can affect systemic conditions. While the mouth is frequently exposed to microbial stressors that can contribute to an inflammatory state in the entire body, chronic disorders can also interfere with oral health. Sharing common risk factors, a dynamic interplay can be driven between 1. dental caries, gingivitis, and type I diabetes mellitus, 2. early childhood caries and obesity, and 3. caries and cardiovascular diseases. Considering that there are ~2.2 billion children worldwide and that childhood provides unique opportunities for intervention targeting future health promotion, this review is of prime importance and aimed to explore the relationship between the oral microbiome and oral chronic diseases driven by metabolic dysfunction in childhood.
Collapse
|
10
|
Lugli GA, Tarracchini C, Alessandri G, Milani C, Mancabelli L, Turroni F, Neuzil-Bunesova V, Ruiz L, Margolles A, Ventura M. Decoding the Genomic Variability among Members of the Bifidobacterium dentium Species. Microorganisms 2020; 8:E1720. [PMID: 33152994 PMCID: PMC7693768 DOI: 10.3390/microorganisms8111720] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/27/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022] Open
Abstract
Members of the Bifidobacterium dentium species are usually identified in the oral cavity of humans and associated with the development of plaque and dental caries. Nevertheless, they have also been detected from fecal samples, highlighting a widespread distribution among mammals. To explore the genetic variability of this species, we isolated and sequenced the genomes of 18 different B. dentium strains collected from fecal samples of several primate species and an Ursus arctos. Thus, we investigated the genomic variability and metabolic abilities of the new B. dentium isolates together with 20 public genome sequences. Comparative genomic analyses provided insights into the vast metabolic repertoire of the species, highlighting 19 glycosyl hydrolases families shared between each analyzed strain. Phylogenetic analysis of the B. dentium taxon, involving 1140 conserved genes, revealed a very close phylogenetic relatedness among members of this species. Furthermore, low genomic variability between strains was also confirmed by an average nucleotide identity analysis showing values higher than 98.2%. Investigating the genetic features of each strain, few putative functional mobile elements were identified. Besides, a consistent occurrence of defense mechanisms such as CRISPR-Cas and restriction-modification systems may be responsible for the high genome synteny identified among members of this taxon.
Collapse
Affiliation(s)
- Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.T.); (C.M.); (L.M.); (F.T.)
| | - Chiara Tarracchini
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.T.); (C.M.); (L.M.); (F.T.)
| | - Giulia Alessandri
- Department of Veterinary Medical Science, University of Parma, 43126 Parma, Italy;
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.T.); (C.M.); (L.M.); (F.T.)
- Microbiome Research Hub, University of Parma, 13121 Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.T.); (C.M.); (L.M.); (F.T.)
| | - Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.T.); (C.M.); (L.M.); (F.T.)
| | - Vera Neuzil-Bunesova
- Department of Microbiology, Nutrition and Dietetics, Czech University of Life Sciences Prague, Kamycka 129, 16500 Prague, Czech Republic;
| | - Lorena Ruiz
- Department of Microbiology and Biochemistry, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, 33300 Asturias, Spain; (L.R.); (A.M.)
- MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, 33011 Asturias, Spain
| | - Abelardo Margolles
- Department of Microbiology and Biochemistry, Dairy Research Institute of Asturias, Spanish National Research Council (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, 33300 Asturias, Spain; (L.R.); (A.M.)
- MicroHealth Group, Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, 33011 Asturias, Spain
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, 43124 Parma, Italy; (C.T.); (C.M.); (L.M.); (F.T.)
- Microbiome Research Hub, University of Parma, 13121 Parma, Italy
| |
Collapse
|
11
|
Bifidobacterium β-Glucosidase Activity and Fermentation of Dietary Plant Glucosides Is Species and Strain Specific. Microorganisms 2020; 8:microorganisms8060839. [PMID: 32503148 PMCID: PMC7355683 DOI: 10.3390/microorganisms8060839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 01/16/2023] Open
Abstract
Dietary plant glucosides are phytochemicals whose bioactivity and bioavailability can be modified by glucoside hydrolase activity of intestinal microbiota through the release of acylglycones. Bifidobacteria are gut commensals whose genomic potential indicates host-adaption as they possess a diverse set of glycosyl hydrolases giving access to a variety of dietary glycans. We hypothesized bifidobacteria with β-glucosidase activity could use plant glucosides as fermentation substrate and tested 115 strains assigned to eight different species and from different hosts for their potential to express β-glucosidases and ability to grow in the presence of esculin, amygdalin, and arbutin. Concurrently, the antibacterial activity of arbutin and its acylglycone hydroquinone was investigated. Beta-glucosidase activity of bifidobacteria was species specific and most prevalent in species occurring in human adults and animal hosts. Utilization and fermentation profiles of plant glucosides differed between strains and might provide a competitive benefit enabling the intestinal use of dietary plant glucosides as energy sources. Bifidobacterial β-glucosidase activity can increase the bioactivity of plant glucosides through the release of acylglycone.
Collapse
|
12
|
Lamba GS, Dufour D, Nainar SMH, Cioffi I, Lévesque CM, Gong SG. Association of Streptococcus mutans collagen binding genes with severe childhood caries. Clin Oral Investig 2020; 24:3467-3475. [DOI: 10.1007/s00784-020-03217-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/20/2020] [Indexed: 01/05/2023]
|
13
|
Indiani CMDSP, Rizzardi KF, Crescente CL, Steiner-Oliveira C, Nobre-Dos-Santos M, Parisotto TM. Relationship Between Mutans Streptococci and Lactobacilli in the Oral Cavity and Intestine of Obese and Eutrophic Children With Early Childhood Caries-Preliminary Findings of a Cross-Sectional Study. Front Pediatr 2020; 8:588965. [PMID: 33363062 PMCID: PMC7759472 DOI: 10.3389/fped.2020.588965] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022] Open
Abstract
This brief communication assessed whether there was any relationship between the counts of lactobacilli (LB) and mutans streptococci (MS) in the oral cavity and intestine of obese and eutrophic children with early childhood caries (ECC). Seventy-eight preschoolers were assigned into the following groups: 1. obese children with ECC (OECC), 2. eutrophic children with ECC (EECC), 3. obese caries-free children (OCF), and 4. eutrophic caries-free children (ECF). The diagnosis of obesity and ECC was based on the World Health Organization criteria. Dental plaque and fecal samples were collected to assess the counts of MS and LB using selective media. Data were evaluated by Poisson regression analysis, Wilcoxon test, and Sign test. Microbial indicators of ECC in obese children were MS counts in the intestine [rate ratio (RR): 4.38] and presence of LB in the oral cavity (RR: 2.12). The indicators in eutrophic children were MS levels and the presence of LB, both in the oral cavity (RR: 6.35/1.50) and intestine (RR: 2.35/2.38) (p < 0.05). The comparison between MS levels in the mouth and in the intestine revealed significant differences only in the ECF group (p = 0.04). Regarding LB presence in the mouth vs. in the intestine, except for the OCF group (p = 0.03), no other statistical differences were found. Our preliminary findings highlighted that the levels of MS and the presence of LB in the oral cavity, as well as in the lower gastrointestinal tract were associated with ECC. Moreover, obesity was found to influence this relationship.
Collapse
Affiliation(s)
| | - Karina Ferreira Rizzardi
- Laboratory of Clinical and Molecular Microbiology, University São Francisco - USF, Bragança Paulista, Brazil
| | - Camila Lopes Crescente
- Department of Pediatric Dentistry, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Carolina Steiner-Oliveira
- Department of Pediatric Dentistry, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Marinês Nobre-Dos-Santos
- Department of Pediatric Dentistry, Piracicaba Dental School, State University of Campinas - UNICAMP, Piracicaba, Brazil
| | - Thaís Manzano Parisotto
- Laboratory of Clinical and Molecular Microbiology, University São Francisco - USF, Bragança Paulista, Brazil
| |
Collapse
|