1
|
Guo J, Lin K, Wang S, He X, Huang Z, Zheng M. Effects and mechanisms of Porphyromonas gingivalis outer membrane vesicles induced cardiovascular injury. BMC Oral Health 2024; 24:112. [PMID: 38243239 PMCID: PMC10799447 DOI: 10.1186/s12903-024-03886-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024] Open
Abstract
BACKGROUND The outer membrane vesicles (OMVs) derived from Porphyromonas gingivalis (P. gingivalis) have long been acknowledged for their crucial role in the initiation of periodontitis. However, the implications of P. gingivalis OMVs in the context of cardiovascular disease (CVD) remain incompletely understood. This study aimed to clarify both the impact and the underlying mechanisms through which P. gingivalis OMVs contribute to the propagation of distal cardiovascular inflammation and trauma. METHODS In this study, various concentrations (0, 1.25, 2.5, and 4.5 µg/µL) of P. gingivalis OMVs were microinjected into the common cardinal vein of zebrafish larvae at 48 h post-fertilization (hpf) to assess changes in cardiovascular injury and inflammatory response. Zebrafish larvae from both the PBS and the 2.5 µg/µL injection cohorts were harvested at 30 h post-injection (hpi) for transcriptional analysis. Real-time quantitative PCR (RT-qPCR) was employed to evaluate relative gene expression. RESULTS These findings demonstrated that P. gingivalis OMVs induced pericardial enlargement in zebrafish larvae, caused vascular damage, increased neutrophil counts, and activated inflammatory pathways. Transcriptomic analysis further revealed the involvement of the immune response and the extracellular matrix (ECM)-receptor interaction signaling pathway in this process. CONCLUSION This study illuminated potential mechanisms through which P. gingivalis OMVs contribute to CVD. It accentuated their involvement in distal cardiovascular inflammation and emphasizes the need for further research to comprehensively grasp the connection between periodontitis and CVD.
Collapse
Affiliation(s)
- Jianbin Guo
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
| | - Kaijin Lin
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
| | - Siyi Wang
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China
| | - Xiaozhen He
- Institute of Life Sciences, College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Zhen Huang
- Innovation and Transformation Center, Fujian University of Traditional Chinese Medicine, Fuzhou, 350108, China
- College of Life Sciences, Fujian Normal University, Fuzhou, 350108, China
| | - Minqian Zheng
- Fujian Key Laboratory of Oral Diseases & Fujian Provincial Engineering Research Center of Oral Biomaterial & Stomatological Key Lab of Fujian College and University, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China.
- Institute of Stomatology & Research Center of Dental and Craniofacial Implants, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, 350001, China.
| |
Collapse
|
2
|
Huang F, Xie R, Li R, Liu L, Zhao M, Wang Q, Liu W, Ye P, Wang W, Wang X. Attenuation of NLRP3 Inflammasome by Cigarette Smoke is Correlated with Decreased Defense Response of Oral Epithelial Cells to Candida albicans. Curr Mol Med 2024; 24:790-800. [PMID: 37723958 PMCID: PMC11327737 DOI: 10.2174/1566524023666230612143038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 09/20/2023]
Abstract
BACKGROUND It is well recognized that both smoke and Candida infection are crucial risk factors for oral mucosal diseases. The nucleotide-binding domain-like receptor family pyrin domain containing 3 (NLRP3) inflammasome and its downstream effectors, interleukin (IL)-1β and IL-18, are pivotal to the host defense against Candida and other pathogens. METHODS The present study was designed to explore the effects of cigarette smoke and C. albicans on the NLRP3 inflammasome and its downstream signal pathway via in vitro cell model. Oral epithelial cells (Leuk-1 cells) were exposed to cigarette smoke extract (CSE) for 3 days and/or challenged with C. albicans. RESULTS Microscopically, Leuk-1 cells exerted a defense response to C. albicans by markedly limiting the formation of germ tubes and microcolonies. CSE clearly eliminated the defense response of Leuk-1 cells. Functionally, CSE repressed NLRP3 inflammasome, and IL-1β and IL-18 activation induced by C. albicans in Leuk-1 cells. CONCLUSION Our results suggested that in oral epithelial cells, the NLRP3 inflammasome might be one of the target pathways by which CSE attenuates innate immunity and leads to oral disorders.
Collapse
Affiliation(s)
- Fan Huang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ruiqi Xie
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ruowei Li
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Liu Liu
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Maomao Zhao
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qiong Wang
- Jiangsu Key Laboratory of Molecular Biology for Skin Disease and STIs, Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Nanjing, China
| | - Weida Liu
- Jiangsu Key Laboratory of Molecular Biology for Skin Disease and STIs, Department of Mycology, Institute of Dermatology, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Nanjing, China
| | - Pei Ye
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wenmei Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xiang Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Al Natour B, Lundy FT, About I, Jeanneau C, Dombrowski Y, El Karim IA. Regulation of caries-induced pulp inflammation by NLRP3 inflammasome: A laboratory-based investigation. Int Endod J 2023; 56:193-202. [PMID: 36287083 PMCID: PMC10099991 DOI: 10.1111/iej.13855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 10/04/2022] [Accepted: 10/16/2022] [Indexed: 01/17/2023]
Abstract
AIM To evaluate the expression and function of the nod-like receptor pyrin domain containing 3 (NLRP3) inflammasome in caries induced pulpitis. METHODOLOGY NLRP3 expression was determined with immunohistochemistry in the dental pulp and qPCR in dental pulp cells (DPCs). THP-1 macrophages expressing the apoptosis-related speck-like protein (ASC) and green fluorescent protein (GFP) fusion protein were used to assess NLRP3 inflammasome activation by live cell imaging, following treatment with lipopolysaccharide (LPS) and lipoteichoic acid (LTA). Caspase I inhibitor was used to confirm inflammasome activation. An ex-vivo pulpitis model in which the DPCs were co-cultured with THP-1 macrophages was used to study the effect of the NLRP3 inflammasome inhibitor (MCC950), and cytokines were measured using ELISA and multiplex array. Data were analysed using the t-test or anova followed by a Bonferroni post hoc test with the level of significance set at p ≤ .05. RESULTS NLRP3 inflammasome was differentially expressed in dental pulp of sound and carious teeth. Treatment of DPCs with LTA significantly upregulates NLRP3 and IL-1 β-expression (p < .05) and in induces more ASC specks formation compared to LPS. IL-β release in response to LTA treatment is significantly reduced with Caspase I inhibitor suggesting inflammasome dependent mechanism (p < .01). NLRP3-specific inhibitor, MCC950, significantly reduced IL-1β and IL-6 in an ex-vivo pulpitis model (p < .01) but had no effect on IL-8 or matrix metalloproteinase-9 (MMP-9). CONCLUSIONS Expression and upregulation of NLRP3 inflammasome with caries and LTA treatment suggest a role in caries-induced pulpitis. NLRP3 inhibitor attenuated the release of selective inflammatory cytokines and could be a potential treatment target that merit further investigation.
Collapse
Affiliation(s)
- Banan Al Natour
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK.,Department of Oral Medicine and Surgery, Jordan University of Science and Technology, Irbid, Jordan
| | - Fionnuala T Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Imad About
- Aix Marseille University, CNRS, Institute of Movement Sciences, Marseille, France
| | - Charlotte Jeanneau
- Aix Marseille University, CNRS, Institute of Movement Sciences, Marseille, France
| | - Yvonne Dombrowski
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Ikhlas A El Karim
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
4
|
Cheat B, Torrens C, Foda A, Baroukh B, Sadoine J, Slimani L, Witko-Sarsat V, Huck O, Gosset M, Bouchet J. NLRP3 Is Involved in Neutrophil Mobilization in Experimental Periodontitis. Front Immunol 2022; 13:839929. [PMID: 35281020 PMCID: PMC8905524 DOI: 10.3389/fimmu.2022.839929] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
The NLRP3 inflammasome is overexpressed in gingiva of periodontitis patients but its role remains unclear. In our study, we use a periodontitis mouse model of ligature, impregnated or not with Porphyromonas gingivalis, in WT or NLRP3 KO mice. After 28 days of induction, ligature alone provoked exacerbated periodontal destruction in KO mice, compared to WT mice, with an increase in activated osteoclasts. No difference was observed at 14 days, suggesting that NLRP3 is involved in regulatory pathways that limit periodontitis. In contrast, in the presence of P. gingivalis, this protective effect of NLRP3 was not observed. Overexpression of NLRP3 in connective tissue of WT mice increased the local production of mature IL-1β, together with a dramatic mobilization of neutrophils, bipartitely distributed between the site of periodontitis induction and the alveolar bone crest. P. gingivalis enhanced the targeting of NLRP3-positive neutrophils to the alveolar bone crest, suggesting a role for this subpopulation in bone loss. Conversely, in NLRP3 KO mice, mature IL-1β expression was lower and almost no neutrophils were mobilized. Our study sheds new light on the role of NLRP3 in periodontitis by highlighting the ambiguous role of neutrophils, and P. gingivalis which affects NLRP3 functions.
Collapse
Affiliation(s)
- Banndith Cheat
- Université de Paris, Laboratory of Orofacial Pathologies, Imaging and Biotherapies URP2496, Montrouge, France.,Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Coralie Torrens
- Université de Paris, Laboratory of Orofacial Pathologies, Imaging and Biotherapies URP2496, Montrouge, France.,Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Asmaa Foda
- Université de Paris, Laboratory of Orofacial Pathologies, Imaging and Biotherapies URP2496, Montrouge, France.,Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Brigitte Baroukh
- Université de Paris, Laboratory of Orofacial Pathologies, Imaging and Biotherapies URP2496, Montrouge, France.,Laboratoire d'Excellence INFLAMEX, Paris, France
| | - Jeremy Sadoine
- Université de Paris, Laboratory of Orofacial Pathologies, Imaging and Biotherapies URP2496, Montrouge, France.,Université de Paris, Plateforme Imageries du Vivant, Faculté de Chirurgie Dentaire, Montrouge, France
| | - Lotfi Slimani
- Université de Paris, Laboratory of Orofacial Pathologies, Imaging and Biotherapies URP2496, Montrouge, France.,Université de Paris, Plateforme Imageries du Vivant, Faculté de Chirurgie Dentaire, Montrouge, France
| | - Véronique Witko-Sarsat
- Laboratoire d'Excellence INFLAMEX, Paris, France.,Université de Paris, INSERM U1016, CNRS UMR 8104, Institut Cochin, Paris, France
| | - Olivier Huck
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Periodontology, Strasbourg, France.,INSERM, UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Marjolaine Gosset
- Université de Paris, Laboratory of Orofacial Pathologies, Imaging and Biotherapies URP2496, Montrouge, France.,Laboratoire d'Excellence INFLAMEX, Paris, France.,Service de Médecine Bucco-Dentaire, AP-HP, Hôpital Charles Foix, Ivry-sur-Seine, France
| | - Jérôme Bouchet
- Université de Paris, Laboratory of Orofacial Pathologies, Imaging and Biotherapies URP2496, Montrouge, France.,Laboratoire d'Excellence INFLAMEX, Paris, France
| |
Collapse
|
5
|
Nrf2 in the Field of Dentistry with Special Attention to NLRP3. Antioxidants (Basel) 2022; 11:antiox11010149. [PMID: 35052653 PMCID: PMC8772975 DOI: 10.3390/antiox11010149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/06/2022] [Accepted: 01/09/2022] [Indexed: 02/06/2023] Open
Abstract
The aim of this review article was to summarize the functional implications of the nuclear factor E2-related factor or nuclear factor (erythroid-derived 2)-like 2 (Nrf2), with special attention to the NACHT (nucleotide-binding oligomerization), LRR (leucine-rich repeat), and PYD (pyrin domain) domains-containing protein 3 (NLRP3) inflammasome in the field of dentistry. NLRP3 plays a crucial role in the progression of inflammatory and adaptive immune responses throughout the body. It is already known that this inflammasome is a key regulator of several systemic diseases. The initiation and activation of NLRP3 starts with the oral microbiome and its association with the pathogenesis and progression of several oral diseases, including periodontitis, periapical periodontitis, and oral squamous cell carcinoma (OSCC). The possible role of the inflammasome in oral disease conditions may involve the aberrant regulation of various response mechanisms, not only in the mouth but in the whole body. Understanding the cellular and molecular biology of the NLRP3 inflammasome and its relationship to Nrf2 is necessary for the rationale when suggesting it as a potential therapeutic target for treatment and prevention of oral inflammatory and immunological disorders. In this review, we highlighted the current knowledge about NLRP3, its likely role in the pathogenesis of various inflammatory oral processes, and its crosstalk with Nrf2, which might offer future possibilities for disease prevention and targeted therapy in the field of dentistry and oral health.
Collapse
|
6
|
Li Y, Ling J, Jiang Q. Inflammasomes in Alveolar Bone Loss. Front Immunol 2021; 12:691013. [PMID: 34177950 PMCID: PMC8221428 DOI: 10.3389/fimmu.2021.691013] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022] Open
Abstract
Bone remodeling is tightly controlled by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. Fine tuning of the osteoclast-osteoblast balance results in strict synchronization of bone resorption and formation, which maintains structural integrity and bone tissue homeostasis; in contrast, dysregulated bone remodeling may cause pathological osteolysis, in which inflammation plays a vital role in promoting bone destruction. The alveolar bone presents high turnover rate, complex associations with the tooth and periodontium, and susceptibility to oral pathogenic insults and mechanical stress, which enhance its complexity in host defense and bone remodeling. Alveolar bone loss is also involved in systemic bone destruction and is affected by medication or systemic pathological factors. Therefore, it is essential to investigate the osteoimmunological mechanisms involved in the dysregulation of alveolar bone remodeling. The inflammasome is a supramolecular protein complex assembled in response to pattern recognition receptors and damage-associated molecular patterns, leading to the maturation and secretion of pro-inflammatory cytokines and activation of inflammatory responses. Pyroptosis downstream of inflammasome activation also facilitates the clearance of intracellular pathogens and irritants. However, inadequate or excessive activity of the inflammasome may allow for persistent infection and infection spreading or uncontrolled destruction of the alveolar bone, as commonly observed in periodontitis, periapical periodontitis, peri-implantitis, orthodontic tooth movement, medication-related osteonecrosis of the jaw, nonsterile or sterile osteomyelitis of the jaw, and osteoporosis. In this review, we present a framework for understanding the role and mechanism of canonical and noncanonical inflammasomes in the pathogenesis and development of etiologically diverse diseases associated with alveolar bone loss. Inappropriate inflammasome activation may drive alveolar osteolysis by regulating cellular players, including osteoclasts, osteoblasts, osteocytes, periodontal ligament cells, macrophages, monocytes, neutrophils, and adaptive immune cells, such as T helper 17 cells, causing increased osteoclast activity, decreased osteoblast activity, and enhanced periodontium inflammation by creating a pro-inflammatory milieu in a context- and cell type-dependent manner. We also discuss promising therapeutic strategies targeting inappropriate inflammasome activity in the treatment of alveolar bone loss. Novel strategies for inhibiting inflammasome signaling may facilitate the development of versatile drugs that carefully balance the beneficial contributions of inflammasomes to host defense.
Collapse
Affiliation(s)
- Yang Li
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Junqi Ling
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China.,Guangdong Province Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Qianzhou Jiang
- Department of Endodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
7
|
|
8
|
Aral K, Milward MR, Kapila Y, Berdeli A, Cooper PR. Inflammasomes and their regulation in periodontal disease: A review. J Periodontal Res 2020; 55:473-487. [PMID: 31960443 DOI: 10.1111/jre.12733] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/15/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022]
Abstract
Interleukin-1β (IL-1β), which is secreted by host tissues leading to periodontal tissue inflammation, is a major pro-inflammatory cytokine in the pathogenesis of periodontal disease. The conversion of pro-IL-1β into its biologically active form is controlled by multiprotein complexes named as inflammasomes, which are key regulator of host defense mechanisms and inflammasome involved diseases, including the periodontal diseases. Inflammasomes are regulated by different proteins and processes, including pyrin domain (PYD)-only proteins (POPs), CARD-only proteins (COPs), tripartite motif family proteins (TRIMs), autophagy, and interferons. A review of in vitro, in vivo, and clinical data from these publications revealed that several inflammasomes including (NOD)-like receptor (NLR) pyrin domain-containing 3 (NLRP3) and absent in melanoma 2 (AIM2) have been found to be involved in periodontal disease pathogenesis. To the best of our knowledge, the current article provides the first review of the literature focusing on studies that evaluated both inflammasomes and their regulators in periodontal disease. An upregulation for inflammasomes and a downregulation of inflammasome regulator proteins including POPs, COPs, and TRIMs have been reported in periodontal disease. Although interferons (types I and II) and autophagy have been found to be involved in periodontal disease, their possible role in inflammasome activation has not evaluated yet. Modulating the excessive inflammatory response by the use of inflammasome regulators may have potential in the management of periodontal disease.
Collapse
Affiliation(s)
- Kübra Aral
- Oral Biology, School of Dentistry, University of Birmingham, Birmingham, UK.,Republic of Turkey Ministry of Health, Ankara, Turkey
| | - Michael R Milward
- Periodontology, School of Dentistry, University of Birmingham, Birmingham, UK
| | - Yvonne Kapila
- Orofacial Sciences, The School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Afig Berdeli
- Molecular Genetics, Faculty of Medicine, Ege University, Izmir, Turkey
| | - Paul R Cooper
- Oral Biology, School of Dentistry, University of Birmingham, Birmingham, UK.,Department of Oral Sciences, Faculty of Dentistry, University of Otago, Dunedin, New Zealand
| |
Collapse
|
9
|
Sasabe E, Tomomura A, Kitamura N, Yamamoto T. Metal nanoparticles-induced activation of NLRP3 inflammasome in human oral keratinocytes is a possible mechanism of oral lichenoid lesions. Toxicol In Vitro 2019; 62:104663. [PMID: 31669392 DOI: 10.1016/j.tiv.2019.104663] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 09/22/2019] [Indexed: 01/08/2023]
Abstract
The NLRP3 inflammasome has been implicated in the pathogenesis of various inflammatory diseases and is activated by particulate stimulants. Oral epithelial keratinocytes are frequently exposed to metal nanoparticles. In this study, we examined the effects of gold, silver, and palladium nanoparticles, which are frequently used for dental metal alloys on cell proliferation, cytotoxicity, autophagy, lysosomal functions, and NLRP3 inflammasome activation using the immortalized human oral keratinocyte cell line RT-7. The metal nanoparticles were agglomerated in the membrane vesicles in RT-7 cells and suppressed cell proliferation and increased lactate dehydrogenase activity as well as the proportion of apoptotic cells. Silver and palladium nanoparticles induced autophagy and lysosomal dysfunctions and all metal nanoparticles tested triggered the secretion of IL-1β through caspase-1 activation. Furthermore, the epithelium obtained from patients with oral lichenoid lesions (OLLs) had robust NLRP3, ASC, caspase-1, and IL-1β-positive keratinocytes and cDNA microarray showed significant elevation in the mRNA levels of NLRP3. These results suggest that internalized metal nanoparticles in oral mucosal epithelial cells activate the NLRP3 inflammasome through the induction of lysosomal damage and autophagy dysfunction. This process may be involved in the pathogenesis of OLL and suggest its potential as an alternative target for OLL therapy.
Collapse
Affiliation(s)
- Eri Sasabe
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan.
| | - Ayumi Tomomura
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| | - Naoya Kitamura
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| | - Tetsuya Yamamoto
- Department of Oral and Maxillofacial Surgery, Kochi Medical School, Kochi University, Kohasu, Oko-cho, Nankoku-city, Kochi 783-8505, Japan
| |
Collapse
|