1
|
Su X, Pillai S, Liu Y, Tran SD. Isolation, Culture, and Characterization of Primary Salivary Gland Cells. Curr Protoc 2022; 2:e479. [PMID: 35790092 DOI: 10.1002/cpz1.479] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Primary cells are an essential tool for in vitro studies and are obtained directly from living tissues or organs. They closely mimic the physiological state and maintain in vivo functions for short periods of time under optimal conditions. Isolation and culture of salivary gland (SG) cells are useful to decipher the various mechanisms involved in salivary gland dysfunction. However, unlike some other primary cell cultures, SG cell cultures from patient-derived tissues present several challenges. They are difficult to obtain, culture, expand, and characterize due to their sensitive heterogenous cell population and limited expansion potential. In addition, the majority of saliva-secreting acinar cells fail to maintain a differentiated state ex vivo for long periods, and eventually succumb to an acinar-to-ductal metaplasia, losing their secretory phenotype and functions. Herein, we describe two detailed protocols for primary SG cell isolation, culture, and expansion from human (or mouse) salivary tissues using serum-free culture media. We also describe the growth kinetics of these primary cells along with their immunocytochemical characterization. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Preparation of SG single-cell culture from freshly obtained human or mouse SG tissues. Basic Protocol 2: Preparation of SG explant culture from freshly obtained human or mouse SG tissues.
Collapse
Affiliation(s)
- Xinyun Su
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
- Guangdong Provincial Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Sangeeth Pillai
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Younan Liu
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Canada
| |
Collapse
|
2
|
Song Y, Sharipol A, Uchida H, Ingalls MH, Piraino L, Mereness JA, Moyston T, DeLouise LA, Ovitt CE, Benoit DS. Encapsulation of Primary Salivary Gland Acinar Cell Clusters and Intercalated Ducts (AIDUCs) within Matrix Metalloproteinase (MMP)-Degradable Hydrogels to Maintain Tissue Structure and Function. Adv Healthc Mater 2022; 11:e2101948. [PMID: 34994104 PMCID: PMC8986612 DOI: 10.1002/adhm.202101948] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/08/2021] [Indexed: 12/13/2022]
Abstract
Progress in the development of salivary gland regenerative strategies is limited by poor maintenance of the secretory function of salivary gland cells (SGCs) in vitro. To reduce the precipitous loss of secretory function, a modified approach to isolate intact acinar cell clusters and intercalated ducts (AIDUCs), rather than commonly used single cell suspension, is investigated. This isolation approach yields AIDUCs that maintain many of the cell-cell and cell-matrix interactions of intact glands. Encapsulation of AIDUCs in matrix metalloproteinase (MMP)-degradable PEG hydrogels promotes self-assembly into salivary gland mimetics (SGm) with acinar-like structure. Expression of Mist1, a transcription factor associated with secretory function, is detectable throughout the in vitro culture period up to 14 days. Immunohistochemistry also confirms expression of acinar cell markers (NKCC1, PIP and AQP5), duct cell markers (K7 and K5), and myoepithelial cell markers (SMA). Robust carbachol and ATP-stimulated calcium flux is observed within the SGm for up to 14 days after encapsulation, indicating that secretory function is maintained. Though some acinar-to-ductal metaplasia is observed within SGm, it is reduced compared to previous reports. In conclusion, cell-cell interactions maintained within AIDUCs together with the hydrogel microenvironment may be a promising platform for salivary gland regenerative strategies.
Collapse
Affiliation(s)
- Yuanhui Song
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - Azmeer Sharipol
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
| | - Hitoshi Uchida
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Matthew H. Ingalls
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
| | - Lindsay Piraino
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Dermatology, University of Rochester, Rochester, NY, USA
| | - Jared A. Mereness
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
| | - Tracey Moyston
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Lisa A. DeLouise
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Department of Dermatology, University of Rochester, Rochester, NY, USA
- Materials Science Program, University of Rochester, Rochester, NY, USA
| | - Catherine E. Ovitt
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA
| | - Danielle S.W. Benoit
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
- Center for Oral Biology, University of Rochester, Rochester, NY, USA
- Department of Biomedical Genetics, University of Rochester, Rochester, NY, USA
- Department of Environmental Medicine, University of Rochester, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester, Rochester, NY, USA
- Materials Science Program, University of Rochester, Rochester, NY, USA
- Department of Chemical Engineering, University of Rochester, Rochester, NY, USA
- Center for Musculoskeletal Research, University of Rochester, Rochester, NY, USA
| |
Collapse
|
3
|
Koslow M, O'Keefe KJ, Hosseini ZF, Nelson DA, Larsen M. ROCK inhibitor increases proacinar cells in adult salivary gland organoids. Stem Cell Res 2019; 41:101608. [PMID: 31731180 PMCID: PMC7069099 DOI: 10.1016/j.scr.2019.101608] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 09/12/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023] Open
Abstract
Salisphere-derived adult epithelial cells have been used to improve saliva production of irradiated mouse salivary glands. Importantly, optimization of the cellular composition of salispheres could improve their regenerative capabilities. The Rho Kinase (ROCK) inhibitor, Y27632, has been used to increase the proliferation and reduce apoptosis of progenitor cells grown in vitro. In this study, we investigated whether Y27632 could be used to improve expansion of adult submandibular salivary epithelial progenitor cells or to affect their differentiation potential in different media contexts. Application of Y27632 in medium used previously to grow salispheres promoted expansion of Kit+ and Mist1+ cells, while in simple serum-containing medium Y27632 increased the number of cells that expressed the K5 basal progenitor marker. Salispheres derived from Mist1CreERT2; R26TdTomato mice grown in salisphere media with Y27632 included Mist1-derived cells. When these salispheres were incorporated into 3D organoids, inclusion of Y27632 in the salisphere stage increased the contribution of Mist1-derived cells expressing the proacinar/acinar marker, Aquaporin 5 (AQP5), in response to FGF2-dependent mesenchymal signals. Optimization of the cellular composition of salispheres and organoids can be used to improve the application of adult salivary progenitor cells in regenerative medicine strategies.
Collapse
Affiliation(s)
- Matthew Koslow
- Graduate program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA; Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA; RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Kevin J O'Keefe
- Graduate program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA; Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA; RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Zeinab F Hosseini
- Graduate program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA; Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA; RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Deirdre A Nelson
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA; RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Melinda Larsen
- Graduate program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA; Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA; RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA; Department of Biological Sciences, University at Albany, SUNY, 1400 Washington Ave., LSRB 1086, Albany, NY 12222, USA.
| |
Collapse
|
4
|
Weng PL, Aure MH, Ovitt CE. Concise Review: A Critical Evaluation of Criteria Used to Define Salivary Gland Stem Cells. Stem Cells 2019; 37:1144-1150. [PMID: 31175700 DOI: 10.1002/stem.3046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/20/2019] [Indexed: 12/19/2022]
Abstract
In the effort to develop cell-based therapies to treat salivary gland dysfunction, many different populations of cells in the adult salivary glands have been proposed as stem cells. These cell populations vary, depending on the assay used, and are often nonoverlapping, leading to the conclusion that salivary glands harbor multiple stem cells. The goal of this review is to critically appraise the assays and properties used to identify stem cells in the adult salivary gland, and to consider the caveats of each. Re-evaluation of the defining criteria may help to reconcile the many potential stem cell populations described in the salivary gland, in order to increase comparability between studies and build consensus in the field. Stem Cells 2019;37:1144-1150.
Collapse
Affiliation(s)
- Pei-Lun Weng
- Department of Dermatology, Yale University, New Haven, Connecticut, USA.,Department of Pathology, Yale University, New Haven, Connecticut, USA
| | - Marit H Aure
- Matrix and Morphology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA
| | - Catherine E Ovitt
- Center for Oral Biology, Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| |
Collapse
|