1
|
Shiers S, Elahi H, Hennen S, Price TJ. Evaluation of calcium-sensitive adenylyl cyclase AC1 and AC8 mRNA expression in the anterior cingulate cortex of mice with spared nerve injury neuropathy. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2022; 11:100081. [PMID: 35005298 PMCID: PMC8715370 DOI: 10.1016/j.ynpai.2021.100081] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/19/2022]
Abstract
AC1 and AC8 are widely expressed in many regions of the mouse brain including the hippocampus, ACC, medial prefrontal cortex and midbrain regions, but AC1 is more highly expressed. Findings suggest a potential role for AC8 in anxiety-like behaviors caused by spared nerve injury in mice. SNI causes an increase in AC8 mRNA expression in NMDAR-2B (Nr2b) positive neurons in the contralateral ACC but does not affect AC1 mRNA expression.
The anterior cingulate cortex (ACC) is a critical region of the brain for the emotional and affective components of pain in rodents and humans. Hyperactivity in this region has been observed in neuropathic pain states in both patients and animal models and ablation of this region from cingulotomy, or inhibition with genetics or pharmacology can diminish pain and anxiety. Two adenylyl cyclases (AC), AC1 and AC8 play an important role in regulating nociception and anxiety-like behaviors through an action in the ACC, as genetic and pharmacological targeting of these enzymes reduces mechanical hypersensitivity and anxiety-like behavior, respectively. However, the distribution of these ACs in the ACC has not been studied in the context of neuropathic pain. To address this gap in knowledge, we conducted RNAscope in situ hybridization to assess AC1 and AC8 mRNA distribution in mice with spared nerve injury (SNI). Given the key role of AC1 in nociception in neuropathic, inflammatory and visceral pain animal models, we hypothesized that AC1 would be upregulated in the ACC of mice following nerve injury. This hypothesis was also founded on data showing increased AC1 expression in the ACC of mice with zymosan-induced visceral inflammation. We found that AC1 and AC8 are widely expressed in many regions of the mouse brain including the hippocampus, ACC, medial prefrontal cortex and midbrain regions, but AC1 is more highly expressed. Contrary to our hypothesis, SNI causes an increase in AC8 mRNA expression in NMDAR-2B (Nr2b) positive neurons in the contralateral ACC but does not affect AC1 mRNA expression. Our findings show that changes in Adcy1 mRNA expression in the ACC are insufficient to explain the important role of this AC in mechanical hypersensitivity in mice following nerve injury and suggest a potential unappreciated role of AC8 in regulation of ACC synaptic changes after nerve injury.
Collapse
Affiliation(s)
- Stephanie Shiers
- The University of Texas at Dallas, Center for Advanced Pain Studies and Department of Neuroscience, Richardson, TX, USA
| | - Hajira Elahi
- The University of Texas at Dallas, Center for Advanced Pain Studies and Department of Neuroscience, Richardson, TX, USA
| | | | - Theodore J Price
- The University of Texas at Dallas, Center for Advanced Pain Studies and Department of Neuroscience, Richardson, TX, USA
| |
Collapse
|
2
|
Mogil JS, Pang DSJ, Silva Dutra GG, Chambers CT. The development and use of facial grimace scales for pain measurement in animals. Neurosci Biobehav Rev 2020; 116:480-493. [PMID: 32682741 DOI: 10.1016/j.neubiorev.2020.07.013] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/25/2020] [Accepted: 07/14/2020] [Indexed: 12/20/2022]
Abstract
The measurement of pain in animals is surprisingly complex, and remains a critical issue in veterinary care and biomedical research. Based on the known utility of pain measurement via facial expression in verbal and especially non-verbal human populations, "grimace scales" were first developed a decade ago for use in rodents and now exist for 10 different mammalian species. This review details the background context, historical development, features (including duration), psychometric properties, modulatory factors, and impact of animal grimace scales for pain.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Depts. of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain McGill University, Montreal, QC, Canada.
| | - Daniel S J Pang
- Veterinary Clinical and Diagnostic Services, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Gabrielle Guanaes Silva Dutra
- Depts. of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain McGill University, Montreal, QC, Canada
| | | |
Collapse
|
3
|
Morii A, Miyamura Y, Sago MI, Mizuhara M, Shikayama T, Naniwa M, Hitomi S, Ujihara I, Kuroishi KN, Gunjigake KK, Shiga M, Morimoto Y, Kawamoto T, Ono K. Orthodontic force-induced oxidative stress in the periodontal tissue and dental pulp elicits nociception via activation/sensitization of TRPA1 on nociceptive fibers. Free Radic Biol Med 2020; 147:175-186. [PMID: 31866360 DOI: 10.1016/j.freeradbiomed.2019.12.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/11/2019] [Accepted: 12/16/2019] [Indexed: 11/18/2022]
Abstract
Orthodontic patients complain of pain for the first few days after insertion of appliances. Mechanical force has been reported to produce oxidants in periodontal ligament (PDL) cells. It has not been studied whether orthodontic force-induced oxidative stress elicits nociception. Herein, we focused on the role of the oxidant-sensitive channel TRPA1 on nociception in orthodontic pain. In a rat model of loaded orthodontic force between the maxillary first molar and incisor, the behavioral signs of orofacial nociception, facial rubbing and wiping, increased to a peak on day 1 and gradually diminished to the control level on day 5. Administration of free radical scavengers (Tempol and PBN) and TRPA1 antagonist (HC-030031) inhibited nociceptive behaviors on day 1. In the PDL, the oxidative stress marker 8-OHdG was highly detected on day 1 and recovered on day 5 to the sham-operated level. The dental pulp showed similar results as the PDL. TRPA1 mRNA was abundantly expressed in the trigeminal ganglion relative to PDL tissue, and there were TRPA1-immunopositive neuronal fibers in the PDL and pulp. In dissociated trigeminal ganglion neurons, H2O2 at 5 mM induced a Ca2+ response that was inhibited by HC-030031. Although H2O2 at 100 μM did not yield any response, it enhanced the mechanically activated TRPA1-dependent Ca2+ response. These results suggest that oxidative stress in the PDL and dental pulp following orthodontic force activates and/or mechanically sensitizes TRPA1 on nociceptive fibers, resulting in orthodontic nociception. Later, the disappearance of nociception seems to be related to a decrease in oxidative stress, probably due to tissue remodeling.
Collapse
Affiliation(s)
- Aoi Morii
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan; Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| | - Yuichi Miyamura
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan; Division of Oral and Maxillofacial Radiology, Kyushu Dental University, Fukuoka, Japan
| | - Misa I Sago
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| | - Masahiro Mizuhara
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| | - Takemi Shikayama
- Division of Periodontology, Kyushu Dental University, Fukuoka, Japan
| | - Mako Naniwa
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - Suzuro Hitomi
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - Izumi Ujihara
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan
| | - Kayoko N Kuroishi
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| | - Kaori K Gunjigake
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| | - Momotoshi Shiga
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| | - Yasuhiro Morimoto
- Division of Oral and Maxillofacial Radiology, Kyushu Dental University, Fukuoka, Japan
| | - Tatsuo Kawamoto
- Division of Orofacial Functions and Orthodontics, Kyushu Dental University, Fukuoka, Japan
| | - Kentaro Ono
- Division of Physiology, Kyushu Dental University, Fukuoka, Japan.
| |
Collapse
|
4
|
Price T, Brust TF. Adenylyl cyclase 7 and neuropsychiatric disorders: A new target for depression? Pharmacol Res 2019; 143:106-112. [PMID: 30904753 DOI: 10.1016/j.phrs.2019.03.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 12/28/2022]
Abstract
Adenylyl cyclases (ACs) are enzymes that catalyze the production of cyclic adenosine monophosphate (cAMP) from adenosine triphosphate (ATP). Humans express nine isoforms of membranous ACs and a soluble AC. Studies with genetic knockout or overexpression rodent models have indicated that AC isoforms may be targeted to achieve specific therapeutic outcomes. AC1, for instance, has been suggested and pursued as a target for relieving pain. Notably, previous studies examining genetically modified mice as well as human genetic polymorphisms have suggested a link between AC7 activity and depressive disorders. In the present review we present an overview on AC function and discuss the most recent developments to target AC isoforms for drug therapies. We next focus on discussing the available literature on the molecular and animal pharmacology of AC7 highlighting the available studies on the role of AC7 in depressive disorders. In addition, we discuss other possible physiological functions of AC7 relating to ethanol effects and the immune system and conclude with considerations about pharmacological modulation of AC7.
Collapse
Affiliation(s)
- Tatum Price
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL 33416, United States
| | - Tarsis F Brust
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL 33416, United States..
| |
Collapse
|