1
|
Hu HL, Zheng HX, Yuan N, Zhai CL, Chen H, Pan HH, Qian G. CircUsp9x/miR-599/stim1 axis regulates proliferation and migration in vascular smooth muscle cells induced by oxidized-low density lipoprotein. Clin Exp Hypertens 2023; 45:2280758. [PMID: 37963203 DOI: 10.1080/10641963.2023.2280758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/03/2023] [Indexed: 11/16/2023]
Abstract
Circular RNAs (circRNAs) regulate the function of vascular smooth muscle cells (VSMCs) in atherosclerosis (AS) progression. We aimed to explore the role of circUSP9X in oxidized low-density lipoprotein (ox-LDL)-induced VSMCs. Cell proliferation was assessed using cell counting kit-8 and EDU assays. Cell migration was evaluated using Transwell and wound healing assays. The interaction between circUSP9X or STIM1 and miR-599 was analyzed using dual-luciferase reporter and RNA pull-down assays. Their levels were examined using quantitative real-time PCR. CircUSP9X and STIM1 expression was increased, whereas miR-599 expression was reduced in the serum of patients with AS and ox-LDL-stimulated VSMCs. Overexpression of circUSP9X facilitated the proliferation and migration of VSMCs induced by ox-LDL. CircUSP9X sponged miR-599, which targeted STIM1. MiR-599 reversed the effects induced by circUSP9X, and STIM1 reversed the effects induced by miR-599. Taken together, CircUSP9X promoted proliferation and migration in ox-LDL-treated VSMCs via the miR-599/STIM1 axis, providing a theoretical basis for the role of circUSP9X/miR-599/STIM1 axis in AS.
Collapse
Affiliation(s)
- Hui-Lin Hu
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Cardiology, The First Hospital of Jiaxing Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hui-Xiu Zheng
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Cardiology, The First Hospital of Jiaxing Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Na Yuan
- Department of Cardiology, The First Hospital of Jiaxing Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Chang-Lin Zhai
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Cardiology, The First Hospital of Jiaxing Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hao Chen
- Department of Cardiology, The First Hospital of Jiaxing Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Hai-Hua Pan
- Department of Cardiology, The First Hospital of Jiaxing Affiliated Hospital of Jiaxing University, Jiaxing, China
| | - Gang Qian
- Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Cardiology, The First Hospital of Jiaxing Affiliated Hospital of Jiaxing University, Jiaxing, China
| |
Collapse
|
2
|
Chen S, Li Z, Chen D, Cui H, Wang J, Li Z, Li X, Zheng Z, Zhan Z, Liu H. Piezo1-mediated mechanotransduction promotes entheseal pathological new bone formation in ankylosing spondylitis. Ann Rheum Dis 2023; 82:533-545. [PMID: 36543525 DOI: 10.1136/ard-2022-223428] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The aim of this study was to identify the role of Piezo1-mediated mechanotransduction in entheseal pathological new bone formation and to explore the underlying molecular mechanism. METHODS Spinal ligament tissues were collected from 14 patients with ankylosing spondylitis (AS) and 14 non-AS controls and bulk RNA sequencing was conducted. Collagen antibody-induced arthritis models were established to observe pathological new bone formation. Pharmacological inhibition and genetic ablation of Piezo1 was performed in animal models to identify the essential role of Piezo1. Entheseal osteo-chondral lineage cells were collected and in vitro cell culture system was established to study the role and underlying mechanism of Piezo1 in regulation of chondrogenesis, osteogenesis and its own expression. RESULTS Piezo1 was aberrantly upregulated in ligaments and entheseal tissues from patients with AS and animal models. Pharmaceutical and genetic inhibition of Piezo1 attenuated while activation of Piezo1 promoted pathological new bone formation. Mechanistically, activation of CaMKII (Calcium/calmodulin dependent protein kinase II) signalling was found essential for Piezo1-mediated mechanotransduction. In addition, Piezo1 was upregulated by AS-associated inflammatory cytokines. CONCLUSION Piezo1-mediated mechanotransduction promotes entheseal pathological new bone formation through CaMKII signalling in AS.
Collapse
Affiliation(s)
- Siwen Chen
- Department of Spine Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Zihao Li
- Department of Spine Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Dongying Chen
- Deparment of Rheumatology and Immunology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Haowen Cui
- Department of Spine Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Jianru Wang
- Department of Spine Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Zemin Li
- Department of Spine Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Xiang Li
- Department of Spine Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Zhaomin Zheng
- Department of Spine Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| | - Zhongping Zhan
- Deparment of Rheumatology and Immunology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Hui Liu
- Department of Spine Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
- Guangdong Province Key Laboratory of Orthopaedics and Traumatology, Guangzhou, Guangdong, China
| |
Collapse
|
3
|
Wu W, Sun J, Dong M, Yang Q, Yang W, Zhang T, Wang L, Song L. CgTNF-2 promotes the proliferation of haemocytes by regulating the expressions of CgRunx and cell cycle related genes in the Pacific oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2023; 132:108478. [PMID: 36509414 DOI: 10.1016/j.fsi.2022.108478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
A TNF-α family member, CgTNF-2, was previously identified from the oyster Crassostrea gigas to involve in the antibacterial response. In the present study, the role of CgTNF-2 in mediating the proliferation of haemocytes was further explored. The mRNA expression of CgTNF-2 in granulocytes was significantly higher than that in semi-granulocytes and agranulocytes, and the percentages of CgTNF-2 antibody labeled cells in agranulocytes, semi-granulocytes and granulocytes were 19.15%, 40.25% and 94.07%, respectively. After the treatment with rCgTNF-2, the percentage of EdU+ cells in haemocytes increased significantly (1.77-fold, p < 0.05) at 6 h compared with that in rGST-treated group, and the mRNA expressions of CgRunx, CgCyclin A, CgCDK2 and CgCDC45 in haemocytes all increased significantly (p < 0.05), which were 1.94-fold, 2.13-fold, 1.97-fold, 1.76-fold of that in rGST-treated group, respectively. Meanwhile, the protein abundance of CgRunx and CgCyclin A in the haemocytes of oysters in the rCgTNF-2-treated group increased, and the percentage of PI+ haemocytes in S phase also increased significantly (2.19-fold, p < 0.05) compared with that in rGST-treated group. These results collectively confirmed that CgTNF-2 was highly expressed in granulocytes and involved in the proliferation of haemocytes by regulating the expressions of CgRunx and cell cycle related genes in C. gigas.
Collapse
Affiliation(s)
- Wei Wu
- School of Life Science, Liaoning Normal University, Dalian, 116029, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Jiejie Sun
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Miren Dong
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Qian Yang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Wenwen Yang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Tong Zhang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Prevention and Control of Aquatic Animal Diseases, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering, Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Prevention and Control of Aquatic Animal Diseases, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
4
|
Wang W, Wang X, Li L, Liu Y. Anti-Inflammatory and Repairing Effects of Mesoporous Silica-Loaded Metronidazole Composite Hydrogel on Human Dental Pulp Cells. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:6774075. [PMID: 35368951 PMCID: PMC8967504 DOI: 10.1155/2022/6774075] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 11/18/2022]
Abstract
In order to test an effective biopolymer scaffold in promoting the growth of human dental pulp stem cells (HDPSCs), mesoporous silica @ hydrogel (MSN@Gel) nanocomposites are invented as a new type of biopolymer scaffold for HDPSCs proliferation in this paper. The expression levels of alkaline phosphatase (ALP), dentin matrix protein 1 (DMP1), and dentin sialophosphoprotein (DSPP) are significantly increased in the MSN@Gel group so as to better repair damaged dentin. In order to inhibit the proliferation of bacteria in the dental pulp, metronidazole (MTR) is loaded into MSN. The study found that MSN could effectively prolong the half-life of MTR by 1.75 times, and the viability of HDPSCs could be better maintained in the MSN-MTR@Gel group so as to better promote its proliferation to repair pulpitis. However, with the increase of the MTR concentration, its proliferation effect on HDPSCs decreased gradually, and the proliferation effect is the best in 10 μmol/L. Therefore, the MSN-MTR@Gel scaffold is expected to become an effective method for pulpitis therapy in the future.
Collapse
Affiliation(s)
- Wei Wang
- Oral Medical Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518020, China
| | - Xixi Wang
- Department of Stomatology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| | - Luyang Li
- Department of Stomatology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| | - Ying Liu
- Department of Stomatology, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 211100, China
| |
Collapse
|
5
|
Cao Y, Wang Y, Li C, Jiang Q, Zhu L. Effect of TNF-α on the proliferation and osteogenesis of human periodontal mesenchymal stem cells. Exp Ther Med 2021; 21:434. [PMID: 33747173 PMCID: PMC7967876 DOI: 10.3892/etm.2021.9851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/24/2020] [Indexed: 01/01/2023] Open
Abstract
The aim of the present study was to investigate the effect of tumor necrosis factor-α (TNF-α) on the proliferation and osteogenesis of human periodontal mesenchymal stem cells (hPDLSCs). Antigen expression in hPDLSCs was detected by flow cytometry. hPDLSCs were divided into four groups: A control group with no TNF-α treatment, and three experimental groups treated with 0.1, 1 and 10 ng/ml TNF-α, respectively. The effect of TNF-α on proliferation of hPDLSCs in vitro was detected using a Cell Counting Kit-8 assay. Differentiation into an osteogenic lineage was detected by alkaline phosphatase sand alizarin red staining, and the mRNA and protein expression levels of runt-related transcription factor 2 (Runx2), osteocalcin (OCN) and type I collagen (Col-I) were detected using reverse transcription-quantitative PCR and western blot respectively. Following treatment with 10 ng/ml TNF-α, proliferation was significantly increased compared with an untreated control group (P<0.01). Additionally, there was a significant inhibition of alkaline phosphatase enzyme activity, alizarin red mineralization node size, and in the gene and protein expression levels of osteogenic differentiation markers, including Runx2, OCN and COL-I (all, P<0.05). Taken together, the results indicated that treatment with 10 ng/ml TNF-α promoted the proliferation of hPDLSCs in vitro and inhibited osteogenic differentiation of hPDLSCs, providing an experimental basis for regulation of hPDLSC-mediated periodontal tissue regeneration.
Collapse
Affiliation(s)
- Yiting Cao
- Department of Pediatric Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Yiwei Wang
- Department of Oral Medicine, Huaian Stomatological Hospital, Huai'an, Jiangsu 223300, P.R. China
| | - Chenlin Li
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Qian Jiang
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Laikuan Zhu
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
- Department of Endodontics and Operative Dentistry, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| |
Collapse
|
6
|
Sun X, Li M, Ban J, Li Z. miR-23b mediates TNF-α-Inhibited Osteogenic Differentiation of Human Periodontal Ligament Stem Cells by Targeting Runx2. Int J Med Sci 2021; 18:3674-3683. [PMID: 34790039 PMCID: PMC8579284 DOI: 10.7150/ijms.64312] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 08/31/2021] [Indexed: 11/09/2022] Open
Abstract
Periodontitis is the most prevalent oral infection disease, which causes the destruction of periodontal supporting tissues and eventual tooth loss. This study aimed to investigate the molecular mechanism of miRNA-23b (miR-23b) in regulating the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) in an inflammatory environment. Results revealed that tumor necrosis factor-α (TNF-α), a notoriously inflammatory cytokine, remarkably attenuated the osteogenic differentiation of hPDLSCs, which were partially rescued by SKL2001 (Wnt/β-catenin agonist). We further explored the underlying roles of miRNAs involved in TNF-α-inhibited osteogenesis of hPDLSCs. The miR-23b significantly increased with TNF-α stimulation, which was abolished by SKL2001. Similar to the effect of TNF-α, miR-23b agonist (agomir-23b) dramatically reduced the expression of runt-related transcription factor 2 (Runx2) and suppressed the osteogenic differentiation of hPDLSCs. The inhibition of miR-23b significantly increased Runx2, which is the major transcription factor during osteogenesis, thereby indicating that miR-23b was an endogenous regulator of Runx2 in hPDLSCs. Bioinformatic analysis and dual luciferase reporter assays confirmed that Runx2 was a target gene of miR-23b. Furthermore, the gain function assay of Runx2 revealed that the Runx2 overexpression efficiently reversed the suppression of the osteogenic differentiation of hPDLSCs with miR-23b agonist, suggesting that the suppressing effect of miR-23b on osteogenesis was mediated by Runx2 inhibition. Our study clarified that miR-23b mediated the TNF-α-inhibited osteogenic differentiation of hPDLSCs by targeting Runx2. Therefore, the expanded function of miR-23b in the osteogenesis of hPDLSCs under inflammatory conditions. This study might provide new insights and a novel therapeutic target for periodontitis.
Collapse
Affiliation(s)
- Xuefei Sun
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| | - Mingwei Li
- Department of Pediatric Dentistry, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Jinghao Ban
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, School of Stomatology, The Fourth Military Medical University
| | - Zhidan Li
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Clinical Research Center of Shaanxi Province for Dental and Maxillofacial Diseases, Department of Endodontics, College of Stomatology, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
7
|
Huang N, Li C, Sun W, Wu J, Xiao F. Long non-coding RNA TUG1 participates in LPS-induced periodontitis by regulating miR-498/RORA pathway. Oral Dis 2020; 27:600-610. [PMID: 32762066 DOI: 10.1111/odi.13590] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/27/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023]
Abstract
AIM This study was aimed to investigate the role of TUG1 in LPS-stimulated hPDLCs and to evaluate the potential functions of TUG1 in the pathogenesis of periodontitis. METHODS LPS-stimulated hPDLCs were established as the cell model. CCK-8 assay was performed to assess cell proliferation ability. Flow cytometry was performed to detect cell cycle distribution, and quantitative RT-PCR and Western blotting were conducted to measure gene expressions. ELISA kits were used to evaluate the production of inflammatory cytokines. The putative binding site between TUG1 and miR-498 was verified using luciferase reporter and RNA immunoprecipitation assays. RESULTS TUG1 was downregulated upon LPS stimulation in hPDLCs. TUG1 overexpression promoted cell proliferation through regulating the cell cycle distribution, along with the decreased expression of p21 and increased expression of CDK2 and cyclin D1. Besides, TUG1 overexpression decreased the production of inflammatory cytokines. The effects were opposite upon TUG1 knockdown. TUG1 negatively regulated its target miR-498, and influenced the expression of RORA, the direct target of miR-498. Simultaneous TUG1 overexpression and miR-498 reversed the effect of TUG1 overexpression alone on alleviating LPS-induced cell injury and inhibition of Wnt/β-catenin signaling, which was further changeover after co-overexpression with RORA. CONCLUSION Therefore, TUG1 could protect against periodontitis via regulating miR-498/RORA mediated Wnt/β-catenin signaling.
Collapse
Affiliation(s)
- Nannan Huang
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Chanxiu Li
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Wenjuan Sun
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Jian Wu
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| | - Feng Xiao
- Department of Stomatology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, P.R. China
| |
Collapse
|
8
|
Bailly C. Anticancer activities and mechanism of action of the labdane diterpene coronarin D. Pathol Res Pract 2020; 216:152946. [DOI: 10.1016/j.prp.2020.152946] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/12/2022]
|