1
|
Ramenzoni LL, Varghese J, Schmidlin PR, Mehrotra S. Effects of i-PRF, A-PRF+, and EMD on Osteogenic Potential of Osteoblasts on Titanium. Clin Implant Dent Relat Res 2024. [PMID: 39438767 DOI: 10.1111/cid.13406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024]
Abstract
OBJECTIVE The study evaluates three biologically active substances with known bone-inductive potential on previously decontaminated titanium (Ti) discs. MATERIAL AND METHODS Rough and smooth Ti surfaces were contaminated with a multispecies biofilm and cleaned with a chitosan brush. Discs were treated either with injectable-platelet-rich fibrin (i-PRF), advanced platelet-rich fibrin (A-PRF+), or enamel matrix derivatives (EMDs) before osteoblast seeding. RESULTS Biocompatibility, adhesion, migration, and gene expression of runt-related transcription factor 2 (RUNX2), collagen Type I Alpha 2 (COL1a2), alkaline phosphatase (ALP), osteocalcin (OC), and osteonectin (ON) were performed. All the tested biologic agents similarly increased cell viability. Specifically, osteoblasts seeded over i-PRF and EMD-treated surfaces showed improvement in adhesion and migration and significantly increased ALP, OC, ON, RUNX-2, and COL1a2 mRNA levels up to 2.8 fold (p < 0.05) with no differences between Ti surfaces. CONCLUSIONS i-PRF and EMD possess beneficial bioactive properties that enhance tissue healing and promote regeneration on thoroughly sterilized surfaces. Biologically active materials may hold the potential to influence the process of implant re-osseointegration, which warrants more research since sterilization of the affected surfaces under clinical conditions is still not reliably possible and remains one of the greatest challenges.
Collapse
Affiliation(s)
- Liza Lima Ramenzoni
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-Implant Diseases, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Jothi Varghese
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, India
| | - Patrick Roger Schmidlin
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology and Peri-Implant Diseases, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Shubhankar Mehrotra
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, India
| |
Collapse
|
2
|
He X, Guo C, Wang Y, Ma S, Liu X, Wei Y, Xu H, Liang Z, Hu Y, Zhao L, Lian X, Huang D. Enhancing osseointegration of titanium implants through MC3T3-E1 protein-gelatin polyelectrolyte multilayers. J Biomed Mater Res B Appl Biomater 2024; 112:e35373. [PMID: 38359169 DOI: 10.1002/jbm.b.35373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 02/17/2024]
Abstract
Titanium and its alloys have found extensive use in the biomedical field, however, implant loosening due to weak osseointegration remains a concern. Improved surface morphology and chemical composition can enhance the osseointegration of the implant. Bioactive molecules have been utilized to modify the surface of the titanium-based material to achieve rapid and efficient osseointegration between the implant and bone tissues. In this study, the bioactive substance MC3T3-E1 protein-gelatin polyelectrolyte multilayers were constructed on the surface of the titanium implants by means of layer-by-layer self-assembly to enhance the strength of the bond between the bone tissue and the implant. The findings of the study indicate that the layer-by-layer self-assembly technique can enhance surface roughness and hydrophilicity to a considerable extent. Compared to pure titanium, the hydrophilicity of TiOH LBL was significantly increased with a water contact angle of 75.0 ± $$ \pm $$ 2.4°. The modified titanium implant exhibits superior biocompatibility and wound healing ability upon co-culture with cells. MC3T3-E1 cells were co-cultured with TiOH LBL for 1, 3, and 5 days and their viability was higher than 85%. In addition, the wound healing results demonstrate that TiOH LBL exhibited the highest migratory ability (243 ± 10 μm). Furthermore, after 7 days of osteogenic induction, the modified titanium implant significantly promotes osteoblast differentiation.
Collapse
Affiliation(s)
- Xuhong He
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
| | - Chaiqiong Guo
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
| | - Yuhui Wang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
| | - Shilong Ma
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
| | - Xuanyu Liu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
| | - Yan Wei
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Haofeng Xu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
| | - Ziwei Liang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Yinchun Hu
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Liqin Zhao
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| | - Di Huang
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Shanxi Key Laboratory of Materials Strength & Structural Impact, Taiyuan University of Technology, Taiyuan, China
- Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering, Taiyuan, China
| |
Collapse
|
3
|
Fakheran O, Fischer KR, Schmidlin PR. Enamel Matrix Derivatives as an Adjunct to Alveolar Ridge Preservation-A Systematic Review. Dent J (Basel) 2023; 11:dj11040100. [PMID: 37185478 PMCID: PMC10137019 DOI: 10.3390/dj11040100] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/28/2023] [Accepted: 03/29/2023] [Indexed: 05/17/2023] Open
Abstract
PURPOSE To systematically assess the current evidence regarding the adjunctive application of enamel matrix derivatives (EMDs) during alveolar ridge preservation (ARP) following tooth extraction. METHODS A comprehensive literature search was conducted in MEDLINE, Cochrane Library, PsycINFO, Web of Science, Google Scholar, and Scopus to identify relevant randomized controlled clinical trials (RCTs). The primary outcome parameters of this systematic review were histomorphometric and radiographic data; secondary outcomes were the feasibility of implant placement after ARP as well as patient-related outcomes such as postoperative discomfort. RESULTS The search identified 436 eligible articles published from 2011 to 2022, but only five were ultimately included for data extraction (146 patients). Given the substantial heterogeneity among the included studies, no meta-analysis could be performed. The authors' qualitative analysis showed marginally improved outcomes regarding an increased percentage of new bone formation after tooth extraction and a reduction in postoperative discomfort. CONCLUSIONS Given the potential value of EMDs in other fields of regenerative dentistry, more consideration should be given to EMDs as an adjunctive treatment option in ARP. However, more well-controlled randomized clinical trials are necessary to evaluate the exact potential and impacts of EMDs.
Collapse
Affiliation(s)
- Omid Fakheran
- Department of Periodontics, Dental Implants Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, 81658 Isfahan, Iran
- Department of Oral Surgery and Orthodontics, University Clinic of Dental Medicine and Oral Health, Medical University of Graz, Graz 8010, Austria
| | - Kai R Fischer
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology & Peri-Implant Diseases, Center of Dental Medicine, University of Zurich, Plattenstrasse, 11 8032 Zurich, Switzerland
| | - Patrick R Schmidlin
- Clinic of Conservative and Preventive Dentistry, Division of Periodontology & Peri-Implant Diseases, Center of Dental Medicine, University of Zurich, Plattenstrasse, 11 8032 Zurich, Switzerland
| |
Collapse
|
4
|
Li ZB, Li K, Du M, Ren SB, Yu Y. Surgical treatment of peri-implantitis with or without adjunctive graft material: a systematic review and meta-analysis of randomized controlled trials. Int J Oral Maxillofac Surg 2022; 52:107-117. [PMID: 35717280 DOI: 10.1016/j.ijom.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
Abstract
This systematic review and meta-analysis was performed to compare the clinical effect of surgical treatment of peri-implantitis alone or in combination with graft material. Literature searches were conducted up to June 20, 2020. Randomized controlled trials (RCTs) comparing the clinical effects of open flap debridement (OFD) alone and OFD with adjunctive graft materials for the treatment of peri-implantitis were included. Probing depth (PD) changes and marginal bone level (MBL) changes were assessed and expressed as the standardized mean difference (SMD) with 95% confidence interval (CI). Subgroup analyses and sensitivity analyses were conducted. The search yielded 7419 articles, five of which were analysed quantitatively. The adjunctive use of graft materials in OFD did not provide additional PD improvements (SMD 0.46, 95% CI -0.13 to 1.05; P = 0.13), but did yield additional MBL improvements (SMD 1.04, 95% CI 0.71-1.37; P < 0.01). The degradability of the material, number of implants included per patient, and risk of bias did not have significant effects on the results, but the origin of the material may affect the PD improvements. Based on the available evidence, the adjunctive use of graft materials in the surgical treatment of peri-implantitis can significantly improve MBL changes but not PD changes.
Collapse
Affiliation(s)
- Z-B Li
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China; State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China; Department of Periodontology, Jinan Stomatological Hospital, Jinan, China
| | - K Li
- Department of Periodontology, Jinan Stomatological Hospital, Jinan, China
| | - M Du
- School of Public Health, The University of Adelaide and Robinson Research Institute, The University of Adelaide, Adelaide, Australia
| | - S-B Ren
- Department of Stomatology, Medical Team of 66081 Troop of PLA, Zhangjiakou, China
| | - Y Yu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China.
| |
Collapse
|
5
|
The Applications of Enamel Matrix Derivative in Implant Dentistry: A Narrative Review. MATERIALS 2021; 14:ma14113045. [PMID: 34204976 PMCID: PMC8199880 DOI: 10.3390/ma14113045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 11/16/2022]
Abstract
Enamel matrix derivative (EMD) has been successfully used for periodontal regeneration in intrabony defects. Recently, its use for peri-implant bone regeneration has also been hypothesized. The aim of this paper is to review preclinical and clinical studies investigating the use of EMD in correspondence with titanium implants, alone or as an adjunct to other biomaterials. Clinical trials and case series with more than five cases were included. Seven in vitro studies evaluated the effect of EMD, placed on titanium surfaces: An increase in proliferation and viability of osteoblasts was observed in all but two studies. An increase in TGF-β1 and osteocalcin production, alkaline phosphatase activity, and angiogenesis was also reported. Nine animal studies investigated the use of EMD at implant placement or for bone regeneration of peri-implant bone defects, and some of them reported a significant increase in bone formation or bone-to-implant contact. In four of eleven clinical trials on humans, EMD was successfully used at implant placement. The other seven evaluated the use of EMD in protocols for the treatment of peri-implantitis. In conclusion, the results of EMD seem promising, but further randomized clinical trials are needed to evaluate its efficacy.
Collapse
|
6
|
Wehner C, Laky M, Shokoohi-Tabrizi HA, Behm C, Moritz A, Rausch-Fan X, Andrukhov O. Effects of Er:YAG laser irradiation of different titanium surfaces on osteoblast response. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:22. [PMID: 33675441 PMCID: PMC7936964 DOI: 10.1007/s10856-021-06493-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/15/2021] [Indexed: 06/12/2023]
Abstract
The aim of this in vitro study was to evaluate the effects of erbium-doped yttrium aluminum garnet (Er:YAG) laser irradiation on titanium surface topography and the proliferation and differentiation of osteoblasts using standard clinical treatment settings. Er:YAG laser irradiation at two levels ((1): 160 mJ, pulse at 20 Hz; (2): 80 mJ, pulse at 20 Hz) was applied to moderately rough and smooth titanium disks before MG-63 osteoblast-like cells were cultured on these surfaces. Titanium surface and cell morphology were observed by scanning electron microscopy. Cell proliferation/viability was measured by CCK-8 test. Gene expression of alkaline phosphatase (ALP), osteocalcin (OC), osteoprotegerin (OPG), receptor activator of nuclear factor kappa-B ligand (RANKL), and collagen type 1 was measured by qPCR, and OPG and OC protein production was determined by enzyme-linked immunosorbent assay. Treatment with Er:YAG laser at 160 mJ/20 Hz markedly caused heat-induced fusion of titanium and cell condensation on moderately rough surfaces, but not in smooth surfaces. MG-63 proliferation/viability decreased after 5 days in moderately rough surfaces. The expression of ALP, OC, OPG, and collagen type 1 was unaffected by laser treatment at 160 mJ/20. Laser irradiation at 80 mJ/20 Hz enhanced RANKL gene expression after 5 days in moderately rough surfaces. Study results suggest that Er:YAG laser irradiation at clinically relevant setting has no essential effect on osteogenic gene and protein expression of osteoblasts. However, surface structure, cell attachment, and proliferation are influenced by both treatment protocols, which implies that caution should be taken in the clinical treatment of peri-implant diseases when Er:YAG laser is used.
Collapse
Affiliation(s)
- Christian Wehner
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Markus Laky
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Hassan Ali Shokoohi-Tabrizi
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christian Behm
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Division of Orthodontics, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Andreas Moritz
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Xiaohui Rausch-Fan
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Oleh Andrukhov
- Division of Conservative Dentistry and Periodontology, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|