1
|
Tu Y, Li Y, Qu G, Ning Y, Li B, Li G, Wu M, Li S, Huang Y. A Review of Basic Fibroblast Growth Factor Delivery Strategies and Applications in Regenerative Medicine. J Biomed Mater Res A 2025; 113:e37834. [PMID: 39740125 DOI: 10.1002/jbm.a.37834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/24/2024] [Accepted: 10/26/2024] [Indexed: 01/02/2025]
Abstract
Basic fibroblast growth factor (bFGF) is a significant member of the fibroblast growth factor (FGF) family. The bFGF has a three-dimensional structure comprising 12 reverse parallel β-folds. This structure facilitates tissue wound repair, angiogenesis, bone formation, cartilage repair, and nerve regeneration. Consequently, it has garnered significant attention from scholars both domestically and internationally. However, the instability and degradation properties of bFGF in vivo have limited its clinical application. Significant interest has arisen in the development of novel bFGF delivery systems that can address the shortcomings of bFGF and enhance its bioavailability by controlling the release amount, timing, and location. This article offers a comprehensive overview of the research and recent advances in various bFGF delivery systems, including hydrogels, liposomes, microspheres, and nanoparticles. Subsequently, the applications of bFGF pharmaceutical preparations in various fields are described. Finally, the current clinical applications of bFGF drug formulations and those in clinical trials are discussed, along with their clinical translation and future trends.
Collapse
Affiliation(s)
- Yuhan Tu
- Department of Pharmacy, Yueqing Third People's Hospital, Wenzhou, China
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yang Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Gaoer Qu
- Department of Pharmacy, Yueqing Third People's Hospital, Wenzhou, China
| | - Yangyang Ning
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Bin Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Guoben Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Min Wu
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Shijun Li
- Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Yangge Huang
- Department of Pharmacy, Yueqing Third People's Hospital, Wenzhou, China
| |
Collapse
|
2
|
Rahayu RP, Pribadi N, Widjiastuti I, Nugrahani NA. Improvement of Dentin Growth Parameters (Beta-catenin, bFGF, CD105, and BMP4) with Propolis as Adjuvant in Dental Caries Treatment. Eur J Dent 2024. [PMID: 39657939 DOI: 10.1055/s-0044-1791939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024] Open
Abstract
OBJECTIVE The purpose of the study was to evaluate the efficacy of calcium hydroxide (Ca(OH)2) and propolis in pulp capping for dental caries treatment, focusing on dentin growth parameters. The study also aims to determine the role of propolis as a natural adjuvant therapy in enhancing reparative dentin development while emphasizing the importance of proper technique and material preparation with markers for the expression of beta-catenin, bFGF, CD105, and BMP4. MATERIALS AND METHODS The left bottom molar teeth from 28 Wistar rats were divided into four groups. The first group, the control group, was given only aqua dest, and the second group received drilling treatment and additional therapies with Ca(OH)2 (Ca(OH)2) 0.625 μg. The third group was given drilling treatment and additional therapies with a combination of propolis with Ca(OH)2 0.781 μg until day 7. Finally, the fourth group received a combination of propolis with Ca(OH)2 0.781 μg until day 14. This research analyzed the expression of essential basic fibroblast growth factor (bFGF), CD105, beta-catenin, and bone morphogenetic protein 4 (BMP4). RESULTS This research reports that the average expression of BMP4 and bFGF showed a significant result in treatment with additional therapies with propolis and Ca(OH)2. The experiment indicates that propolis and Ca(OH)2 could induce reparative dentine on days 7 and 14. CONCLUSION Propolis as an adjuvant shows better reparative dental formation with improvement in the expression of bFGF and BMP4 in 14 days of therapy.
Collapse
Affiliation(s)
- Retno Pudji Rahayu
- Department of Oral and Maxillofacial Pathology, Faculty of Dentistry, Airlangga University, East Java, Indonesia
| | - Nirawati Pribadi
- Department of Conservative Dentistry, Faculty of Dentistry, Airlangga University, East Java, Indonesia
| | - Ira Widjiastuti
- Department of Conservative Dentistry, Faculty of Dentistry, Airlangga University, East Java, Indonesia
| | - Nur Ariska Nugrahani
- Faculty of Dentistry, Universitas Muhammadiyah Surakarta, Surakarta, Central Java, Indonesia
| |
Collapse
|
3
|
Elnawam H, Thabet A, Mobarak A, Khalil NM, Abdallah A, Nouh S, Elbackly R. Bovine pulp extracellular matrix hydrogel for regenerative endodontic applications: in vitro characterization and in vivo analysis in a necrotic tooth model. Head Face Med 2024; 20:61. [PMID: 39438876 PMCID: PMC11494807 DOI: 10.1186/s13005-024-00460-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Regenerative endodontic procedures (REPs) offer the promise of restoring vitality and function to a previously necrotic and infected tooth. However, the nature of regenerated tissues following REPs remains unpredictable and uncontrollable. Decellularized extracellular matrix scaffolds have gained recent attention as scaffolds for regenerative endodontics. OBJECTIVES Preparation and characterization of a bovine dental pulp-derived extracellular matrix (P-ECM) hydrogel for regenerative endodontic applications. Biocompatibility and regenerative capacity of the prepared scaffold were evaluated in vivo in a canine animal model. METHODS Fifteen freshly extracted bovine molar teeth were used to prepare P-ECM hydrogels following approval of the institutional review board of the faculty of dentistry, Alexandria University. Decellularization and lyophilization of the extracted pulp tissues, DNA quantification and histological examination of decellularized P-ECM were done. P-ECM hydrogel was prepared by digestion of decellularized pulps. Prepared scaffolds were evaluated for protein content and release as well as release of VEGF, bFGF, TGF-β1 and BMP2 using ELISA. Rabbit dental pulp stem cells' (rDPSCs) viability in response to P-ECM hydrogels was performed. Finally, proof-of-concept of the regenerative capacity of P-ECM scaffolds was assessed in an infected mature canine tooth model following REPs versus blood clot (BC), injectable platelet-rich fibrin (i-PRF) or hyaluronic acid (HA). Statistical analysis was done using independent t test, the Friedman test and chi-square tests (p value ≤ 0.05). RESULTS DNA was found to be below the cut-off point (50 ng/mg tissue). Histological evaluation revealed absence of nuclei, retention of glycosaminoglycans (GAGs) and collagen content, respectively. P-ECM hydrogel had a total protein content of (493.12 µg/µl) and protein release was detected up to 14 days. P-ECM hydrogel also retained VEGF, bFGF, TGF-β1 and BMP2. P-ECM hydrogel maintained the viability of rDPSCs as compared to cells cultured under control conditions. P-ECM hydrogel triggered more organized tissues compared to BC, i-PRF and HA when used in REPs for necrotic mature teeth in dogs. Periapical inflammation was significantly less in HA and P-ECM groups compared to blood-derived scaffolds. CONCLUSION Bovine dental pulp-derived extracellular matrix (P-ECM) hydrogel scaffold retained its bioactive properties and demonstrated a promising potential in regenerative endodontic procedures compared to conventional blood-derived scaffolds.
Collapse
Affiliation(s)
- Hisham Elnawam
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt.
- Faculty of Dentistry, Champollion street, Azarita, Alexandria, Egypt.
| | - Abdelrahman Thabet
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Ahmed Mobarak
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Nesma Mohamed Khalil
- Oral Biology Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Amr Abdallah
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| | - Samir Nouh
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Surgery Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Rania Elbackly
- Conservative Dentistry Department, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
- Tissue Engineering Laboratories, Faculty of Dentistry, Alexandria University, Alexandria, Egypt
| |
Collapse
|
4
|
Yu Y, Gao Y, Zeng Y, Ge W, Tang C, Xie X, Liu L. Multifunctional hyaluronic acid/gelatin methacryloyl core-shell microneedle for comprehensively treating oral mucosal ulcers. Int J Biol Macromol 2024; 266:131221. [PMID: 38554926 DOI: 10.1016/j.ijbiomac.2024.131221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Oral ulceration is the most common oral mucosal disease. Oral mucosal ulcers are extremely painful, may interfere with eating and speaking, and potentially complicate systemic symptoms in severe cases. The humid and highly dynamic environment of the oral cavity makes local drug administration for treating oral mucosal ulcers challenging. To overcome these challenges, we designed and prepared a novel dissolving microneedle (MN) patch containing multiple drugs in a core-shell to promote oral ulcer healing. The MNs contained a methacrylate gelatin shell layer of basic fibroblast growth factor (bFGF), a hyaluronic acid (HA) core loaded with dexamethasone (DXMS), and zeolite imidazoline framework-8 (ZIF-8) encapsulated in the HA-based backplane. Progressive degradation of gelatin methacryloyl (GelMA) from the tip of the MN patch in the oral mucosa resulted in sustained bFGF release at the lesion site, significantly promoting cell migration, proliferation, and angiogenesis. Moreover, the rapid release of HA and, subsequently, DXMS inhibited inflammation, and the remaining MN backing after the tip dissolved behaved as a dressing, releasing ZIF-8 for its antimicrobial effects. This novel, multifunctional, transmucosal core-shell MN patch exhibited excellent anti-inflammatory, antimicrobial, and pro-healing effects in vivo and in vitro, suggesting that it can promote oral ulcer healing.
Collapse
Affiliation(s)
- Yi Yu
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yijun Gao
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yiyu Zeng
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Wenhui Ge
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical university, Wenzhou 325200, China
| | - Xiaoyan Xie
- Department of Stomatology, The Second Xiangya Hospital, Central South University, Changsha 410011, China.
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical university, Wenzhou 325200, China..
| |
Collapse
|
5
|
Xie X, Zhang X, Li S, Du W. Involvement of Fgf2-mediated tau protein phosphorylation in cognitive deficits induced by sevoflurane in aged rats. Mol Med 2024; 30:39. [PMID: 38493090 PMCID: PMC10943822 DOI: 10.1186/s10020-024-00784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/11/2024] [Indexed: 03/18/2024] Open
Abstract
OBJECTIVE Anesthetics have been linked to cognitive alterations, particularly in the elderly. The current research delineates how Fibroblast Growth Factor 2 (Fgf2) modulates tau protein phosphorylation, contributing to cognitive impairments in aged rats upon sevoflurane administration. METHODS Rats aged 3, 12, and 18 months were subjected to a 2.5% sevoflurane exposure to form a neurotoxicity model. Cognitive performance was gauged, and the GEO database was employed to identify differentially expressed genes (DEGs) in the 18-month-old cohort post sevoflurane exposure. Bioinformatics tools, inclusive of STRING and GeneCards, facilitated detailed analysis. Experimental validations, both in vivo and in vitro, examined Fgf2's effect on tau phosphorylation. RESULTS Sevoflurane notably altered cognitive behavior in older rats. Out of 128 DEGs discerned, Fgf2 stood out as instrumental in regulating tau protein phosphorylation. Sevoflurane exposure spiked Fgf2 expression in cortical neurons, intensifying tau phosphorylation via the PI3K/AKT/Gsk3b trajectory. Diminishing Fgf2 expression correspondingly curtailed tau phosphorylation, neurofibrillary tangles, and enhanced cognitive capacities in aged rats. CONCLUSION Sevoflurane elicits a surge in Fgf2 expression in aging rats, directing tau protein phosphorylation through the PI3K/AKT/Gsk3b route, instigating cognitive aberrations.
Collapse
Affiliation(s)
- Xin Xie
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dandong District, Liaoning Province, Shenyang, 110042, P. R. China
| | - Xiaomin Zhang
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dandong District, Liaoning Province, Shenyang, 110042, P. R. China
| | - Songze Li
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dandong District, Liaoning Province, Shenyang, 110042, P. R. China
| | - Wei Du
- Department of Anesthesiology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No. 44, Xiaoheyan Road, Dandong District, Liaoning Province, Shenyang, 110042, P. R. China.
| |
Collapse
|
6
|
Esen M, Guven Y, Seyhan MF, Ersev H, Tuna-Ince EB. Evaluation of the genotoxicity, cytotoxicity, and bioactivity of calcium silicate-based cements. BMC Oral Health 2024; 24:119. [PMID: 38245737 PMCID: PMC10799466 DOI: 10.1186/s12903-024-03891-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/12/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND As calcium silicate-based cements (CSCs) have found success in various vital pulp therapy applications, several new CSC products have emerged. This study aimed to assess the genotoxicity, cytotoxicity, and bioactivity of four CSCs by comparing the newly introduced materials Bio MTA+ and MTA Cem with previously studied materials, Biodentine and NeoMTA. METHODS Genotoxicity was evaluated using the micronucleus (MN) assay in human peripheral blood lymphocyte cells, measuring MN frequency and nuclear division index (NDI). Cytotoxicity was assessed in human dental pulp stem cells through the Water-Soluble Tetrazolium Salt-1 (WST-1) colorimetric assay. Bioactivity was determined by ELISA, measuring the levels of angiogenic and odontogenic markers (BMP-2, FGF-2, VEGF, and ALP). Statistical analyses included ANOVA, Dunnet and Sidak tests, and Wald chi-square test. (p < .05). RESULTS The MN frequency in the groups was significantly lower than that in the positive control group (tetraconazole) (p < .05). NDI values decreased with increasing concentration (p < .05). Bio MTA+ and NeoMTA showed decreased cell viability at all concentrations in 7-day cultures (p < .01). All materials increased BMP-2, FGF-2, and VEGF levels, with Biodentine and NeoMTA showing the highest levels of BMP-2 and FGF-2 on day 7. Biodentine displayed the highest VEGF levels on day 7. Biodentine and NeoMTA groups exhibited significantly higher ALP activity than the Bio MTA+ and MTA Cem groups by day 7. CONCLUSION Bio MTA+ and MTA Cem demonstrated no genotoxic or cytotoxic effects. Moreover, this study revealed bioactive potentials of Bio MTA+ and MTA Cem by enhancing the expression of angiogenic and osteogenic growth factors.
Collapse
Affiliation(s)
- Merve Esen
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Yeliz Guven
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey.
| | - Mehmet Fatih Seyhan
- Department of Molecular Biology and Genetics, Faculty of Art and Sciences, Istanbul Yeni Yuzyil University, Istanbul, Turkey
| | - Handan Ersev
- Department of Endodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Elif Bahar Tuna-Ince
- Department of Pedodontics, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| |
Collapse
|
7
|
Tayanloo-Beik A, Nikkhah A, Roudsari PP, Aghayan H, Rezaei-Tavirani M, Nasli-Esfahani E, Mafi AR, Nikandish M, Shouroki FF, Arjmand B, Larijani B. Application of Biocompatible Scaffolds in Stem-Cell-Based Dental Tissue Engineering. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1409:83-110. [PMID: 35999347 DOI: 10.1007/5584_2022_734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
Tissue engineering as an important field in regenerative medicine is a promising therapeutic approach to replace or regenerate injured tissues. It consists of three vital steps including the selection of suitable cells, formation of 3d scaffolds, and adding growth factors. Mesenchymal stem cells (MSCs) and embryonic stem cells (ESCs) are mentioned as two main sources for this approach that have been used for the treatment of various types of disorders. However, the main focus of literature in the field of dental tissue engineering is on utilizing MSCs. On the other hand, biocompatible scaffolds play a notable role in this regenerative process which is mentioned to be harmless with acceptable osteoinductivity. Their ability in inhibiting inflammatory responses also makes them powerful tools. Indeed, stem cell functions should be supported by biomaterials acting as scaffolds incorporated with biological signals. Naturally derived polymeric scaffolds and synthetically engineered polymeric/ceramic scaffolds are two main types of scaffolds regarding their materials that are defined further in this review. Various strategies of tissue bioengineering can affect the regeneration of dentin-pulp complex, periodontium regeneration, and whole teeth bioengineering. In this regard, in vivo/ex vivo experimental models have been developed recently in order to perform preclinical studies of dental tissue engineering which make it more transferable to be used for clinic uses. This review summarizes dental tissue engineering through its different components. Also, strategies of tissue bioengineering and experimental models are introduced in order to provide a perspective of the potential roles of dental tissue engineering to be used for clinical aims.
Collapse
Affiliation(s)
- Akram Tayanloo-Beik
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Amirabbas Nikkhah
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Peyvand Parhizkar Roudsari
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Aghayan
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Rezazadeh Mafi
- Department of Radiation Oncology, Imam Hossein Hospital, Shaheed Beheshti Medical University, Tehran, Iran
| | - Mohsen Nikandish
- AJA Cancer Epidemiology Research and Treatment Center (AJA- CERTC), AJA University of Medical Sciences, Tehran, Iran
| | - Fatemeh Fazeli Shouroki
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Arjmand
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
8
|
Parsegian K. The BMP and FGF pathways reciprocally regulate odontoblast differentiation. Connect Tissue Res 2023; 64:53-63. [PMID: 35816114 PMCID: PMC9832171 DOI: 10.1080/03008207.2022.2094789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/22/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE Previous studies demonstrated that the exposure of primary dental pulp (DP) cultures to fibroblast growth factor 2 (FGF2) between days 3-7 exerted significant and long-lasting stimulatory effects on odontoblast differentiation and Dspp expression. These effects involved the increased expression of components of bone morphogenetic protein (BMP) signaling and were reverted by a BMP inhibitor noggin. FGF2 also transiently stimulated osteoblast differentiation and the expression of Ibsp and Dmp1. The present study aimed to further explore interactions between BMP and FGF signaling during odontoblast and osteoblast differentiation in DP cultures. MATERIALS AND METHODS Cultures were established using DP tissue isolated from non-transgenic and fluorescent reporter (DSPP-Cerulean, BSP-GFP, and DMP1-mCherry) transgenic mice and exposed to BMP2, FGF2, SU5402 (an FGF receptor inhibitor), and noggin between days 3-7. Mineralization, gene expression, fluorescent protein expression, and odontoblast formation were examined using xylenol orange, quantitative PCR, fluorometric analysis, and immunocytochemistry, respectively. RESULTS BMP2 activated SMAD1/5/8 but not ERK1/2 signaling, whereas FGF2 exerted opposite effects. BMP2 did not affect mineralization, the expression of Ibsp and Dmp1, and the percentage of DSPP-Cerulean+ odontoblasts but significantly increased Dspp and DSPP-Cerulean. In cultures exposed to BMP2 and FGF2, respectively, both SU5402 and noggin led to long-lasting decreases in Dspp and DSPP-Cerulean and transient decreases in Dmp1 and DMP1-mCherry without affecting Ibsp and BSP-GFP. CONCLUSION BMP2 and FGF2 exerted reciprocal stimulatory effects on odontoblast differentiation, whereas their effects on osteoblast differentiation were mediated independently. These data will further elucidate the perspectives of using BMP2 and FGF2 for dentin regeneration/repair.
Collapse
Affiliation(s)
- Karo Parsegian
- Division of Periodontics, Department of Surgical Dentistry, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health, Farmington, CT, USA
| |
Collapse
|
9
|
Neural Regeneration in Regenerative Endodontic Treatment: An Overview and Current Trends. Int J Mol Sci 2022; 23:ijms232415492. [PMID: 36555133 PMCID: PMC9779866 DOI: 10.3390/ijms232415492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Pulpal and periapical diseases are the most common dental diseases. The traditional treatment is root canal therapy, which achieves satisfactory therapeutic outcomes-especially for mature permanent teeth. Apexification, pulpotomy, and pulp revascularization are common techniques used for immature permanent teeth to accelerate the development of the root. However, there are obstacles to achieving functional pulp regeneration. Recently, two methods have been proposed based on tissue engineering: stem cell transplantation, and cell homing. One of the goals of functional pulp regeneration is to achieve innervation. Nerves play a vital role in dentin formation, nutrition, sensation, and defense in the pulp. Successful neural regeneration faces tough challenges in both animal studies and clinical trials. Investigation of the regeneration and repair of the nerves in the pulp has become a serious undertaking. In this review, we summarize the current understanding of the key stem cells, signaling molecules, and biomaterials that could promote neural regeneration as part of pulp regeneration. We also discuss the challenges in preclinical or clinical neural regeneration applications to guide deep research in the future.
Collapse
|
10
|
Gomez-Sosa JF, Cardier JE, Caviedes-Bucheli J. The hypoxia-dependent angiogenic process in dental pulp. J Oral Biosci 2022; 64:381-391. [PMID: 35998752 DOI: 10.1016/j.job.2022.08.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 08/09/2022] [Accepted: 08/15/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND In this review, we analyzed the existing literature to elucidate how the hypoxia-dependent angiogenic processes work in dental pulp. Angiogenesis is an essential biological process in the maturation and homeostasis of teeth. It involves multiple sequential steps such as endothelial cell proliferation and migration, cell-to-cell contact, and tube formation. HIGHLIGHT Clinical implications of understanding the process of angiogenesis include how the mineralization processes of dental pulp occur and how dental pulp maintains its homeostasis, preventing irreversible inflammation or necrosis. CONCLUSION The angiogenesis process in dental pulp regulates adequate concentrations of oxygen required for mineralization in root development and defense mechanisms against chronic stimuli.
Collapse
Affiliation(s)
- Jose Francisco Gomez-Sosa
- Unidad de Terapia Celular - Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas-Venezuela.
| | - Jose E Cardier
- Unidad de Terapia Celular - Centro de Medicina Regenerativa, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas-Venezuela
| | | |
Collapse
|
11
|
Cells and material-based strategies for regenerative endodontics. Bioact Mater 2022; 14:234-249. [PMID: 35310358 PMCID: PMC8897646 DOI: 10.1016/j.bioactmat.2021.11.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 10/29/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022] Open
Abstract
<p class = "Abstract" style = "margin: 0 cm; line-height: 32px; font-size: 12 pt; font-family: "Times New Roman", serif; color: rgb(0, 0, 0); "><span lang = "EN-US">The carious process leads to inflammation of pulp tissue. Current care options include root canal treatment or apexification. These procedures, however, result in the loss of tooth vitality, sensitivity, and healing. Pulp capping and dental pulp regeneration are continually evolving techniques to regenerate pulp tissue, avoiding necrosis and loss of vitality. Many studies have successfully employed stem/progenitor cell populations, revascularization approaches, scaffolds or material-based strategies for pulp regeneration. Here we outline advantages and disadvantages of different methods and techniques which are currently being used in the field of regenerative endodontics. We also summarize recent findings on efficacious peptide-based materials which target the dental niche.<o:p></o:p></span></p> Pulp infection necessitates removal of necrotic, inflamed and infected tissue. Materials used clinically are inert (such as gutta percha, mineral trioxide aggregate). Recent developments in materials (angiogenic hydrogels, stem cell composites) have tuneable bioactivity. Dental pulp regeneration may now be possible through the use of bioactive systems, that guide regeneration.
Collapse
|
12
|
Hypoxia Induces DPSC Differentiation versus a Neurogenic Phenotype by the Paracrine Mechanism. Biomedicines 2022; 10:biomedicines10051056. [PMID: 35625792 PMCID: PMC9138575 DOI: 10.3390/biomedicines10051056] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/10/2022] Open
Abstract
As previously described by several authors, dental pulp stem cells (DPSCs), when adequately stimulated, may acquire a neuronal-like phenotype acting as a favorable source of stem cells in the generation of nerves. Besides, it is known that hypoxia conditioning is capable of stimulating cell differentiation as well as survival and self-renewal, and that multiple growth factors, including Epidermal Growth factor (EGF) and basic fibroblast growth factor (bFGF), are often involved in the induction of the neuronal differentiation of progenitor cells. In this work, we investigated the role of hypoxia in the commitment of DPSCs into a neuronal phenotype. These cells were conditioned with hypoxia (O2 1%) for 5 and 16 days; subsequently, we analyzed the proliferation rate and morphology, and tested the cells for neural and stem markers. Moreover, we verified the possible autocrine/paracrine role of DPSCs in the induction of neural differentiation by comparing the secretome profile of the hypoxic and normoxic conditioned media (CM). Our results showed that the hypoxia-mediated DPSC differentiation was time dependent. Moreover, conditioned media (CM derived from DPSCs stimulated by hypoxia were able, in turn, to induce the neural differentiation of SH-SY5Y neuroblastoma cells and undifferentiated DPSCs. In conclusion, under the herein-mentioned conditions, hypoxia seems to favor the differentiation of DPSCs into neuron-like cells. In this way, we confirm the potential clinical utility of differentiated neuronal DPSCs, and we also suggest the even greater potential of CM-derived-hypoxic DPSCs that could more readily be used in regenerative therapies.
Collapse
|
13
|
Biomolecule-Mediated Therapeutics of the Dentin–Pulp Complex: A Systematic Review. Biomolecules 2022; 12:biom12020285. [PMID: 35204786 PMCID: PMC8961586 DOI: 10.3390/biom12020285] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/09/2022] Open
Abstract
The aim of this systematic review was to evaluate the application of potential therapeutic signaling molecules on complete dentin-pulp complex and pulp tissue regeneration in orthotopic and ectopic animal studies. A search strategy was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement in the MEDLINE/PubMed database. Animal studies evaluating the application of signaling molecules to pulpectomized teeth for pulp tissue or dentin-pulp complex regeneration were included. From 2530 identified records, 18 fulfilled the eligibility criteria and were subjected to detailed qualitative analysis. Among the applied molecules, basic fibroblast growth factor, vascular endothelial growth factor, bone morphogenetic factor-7, nerve growth factor, and platelet-derived growth factor were the most frequently studied. The clinical, radiographical and histological outcome measures included healing of periapical lesions, root development, and apical closure, cellular recolonization of the pulp space, ingrowth of pulp-like connective tissue (vascularization and innervation), mineralized dentin-like tissue formation along the internal dentin walls, and odontoblast-like cells in contact with the internal dentin walls. The results indicate that signaling molecules play an important role in dentin/pulp regeneration. However, further studies are needed to determine a more specific subset combination of molecules to achieve greater efficiency towards the desired tissue engineering applications.
Collapse
|
14
|
Duncan WJ, Coates DE. Meeting the challenges and clinical requirements for dental regeneration; the New Zealand experience. Bone 2022; 154:116181. [PMID: 34509689 DOI: 10.1016/j.bone.2021.116181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 11/02/2022]
Abstract
Disease and trauma leading to tooth loss and destruction of supporting bone is a significant oral handicap, which may be addressed through surgical therapies that aim to regenerate the lost tissue. Whilst complete regeneration of teeth is still aspirational, regeneration of supporting structures (dental pulp, cementum, periodontal ligament, bone) is becoming commonplace, both for teeth and for titanium dental implants that are used to replace teeth. Most grafting materials are essentially passive, however the next generation of oral regenerative devices will combine non-antibiotic antimicrobials and/or osteogenic or inductive factors and/or appropriate multipotential stem cells. The review gives an overview of the approaches taken, including fabrication of novel scaffolds, incorporation of growth factors and cell-based therapies, and discusses the preclinical animal models we employ in the development pathway.
Collapse
Affiliation(s)
- Warwick J Duncan
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| | - Dawn E Coates
- Sir John Walsh Research Institute, Faculty of Dentistry, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
15
|
Kurogoushi R, Hasegawa T, Akazawa Y, Iwata K, Sugimoto A, Yamaguchi-Ueda K, Miyazaki A, Narwidina A, Kawarabayashi K, Kitamura T, Nakagawa H, Iwasaki T, Iwamoto T. Fibroblast growth factor 2 suppresses the expression of C-C motif chemokine 11 through the c-Jun N-terminal kinase pathway in human dental pulp-derived mesenchymal stem cells. Exp Ther Med 2021; 22:1356. [PMID: 34659502 PMCID: PMC8515551 DOI: 10.3892/etm.2021.10791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 09/07/2021] [Indexed: 12/15/2022] Open
Abstract
The regulation of the mesenchymal stem cell (MSC) programming mechanism promises great success in regenerative medicine. Tissue regeneration has been associated not only with the differentiation of MSCs, but also with the microenvironment of the stem cell niche that involves various cytokines and immune cells in the tissue regeneration site. In the present study, fibroblast growth factor 2 (FGF2), the principal growth factor for tooth development, dental pulp homeostasis and dentin repair, was reported to affect the expression of cytokines in human dental pulp-derived MSCs. FGF2 significantly inhibited the expression of chemokine C-C motif ligand 11 (CCL11) in a time- and dose-dependent manner in the SDP11 human dental pulp-derived MSC line. This inhibition was diminished following treatment with the AZD4547 FGF receptor (FGFR) inhibitor, indicating that FGF2 negatively regulated the expression of CCL11 in SDP11 cells. Furthermore, FGF2 activated the phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK), extracellular signal-regulated kinase 1/2 (ERK1/2) and c-Jun N-terminal kinases (JNK) in SDP11 cells. The mechanism of the FGFR-downstream signaling pathway was then studied using the SB203580, U0126 and SP600125 inhibitors for p38 MAPK, ERK1/2, and JNK, respectively. Interestingly, only treatment with SP600125 blocked the FGF2-mediated suppression of CCL11. The present results suggested that FGF2 regulated the expression of cytokines and suppressed the expression of CCL11 via the JNK signaling pathway in human dental pulp-derived MSCs. The present findings could provide important insights into the association of FGF2 and CCL11 in dental tissue regeneration therapy.
Collapse
Affiliation(s)
- Rika Kurogoushi
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan.,Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Tomokazu Hasegawa
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Yuki Akazawa
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Kokoro Iwata
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Asuna Sugimoto
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| | - Kimiko Yamaguchi-Ueda
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Aya Miyazaki
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Anrizandy Narwidina
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Keita Kawarabayashi
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Takamasa Kitamura
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Hiroshi Nakagawa
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Tomonori Iwasaki
- Department of Pediatric Dentistry, Institute of Biomedical Sciences, Tokushima University Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - Tsutomu Iwamoto
- Department of Pediatric Dentistry/Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8549, Japan
| |
Collapse
|
16
|
Liu K, Yu S, Ye L, Gao B. The Regenerative Potential of bFGF in Dental Pulp Repair and Regeneration. Front Pharmacol 2021; 12:680209. [PMID: 34354584 PMCID: PMC8329335 DOI: 10.3389/fphar.2021.680209] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 06/22/2021] [Indexed: 02/05/2023] Open
Abstract
Regenerative endodontic therapy intends to induce the host’s natural wound-healing process, which can restore the vitality, immunity, and sensitivity of the inflammatory or necrotic pulp tissue destroyed by infection or trauma. Myriads of growth factors are critical in the processes of pulp repair and regeneration. Among the key regulatory factors are the fibroblast growth factors, which have turned out to be the master regulators of both organogenesis and tissue homeostasis. Fibroblast growth factors, a family composed of 22 polypeptides, have been used in tissue repair and regeneration settings, in conditions as diverse as burns, ulcers, bone-related diseases, and spinal cord injuries. Meanwhile, in dentistry, the basic fibroblast growth factor is the most frequently investigated. Thereby, the aim of this review is 2-fold: 1) foremost, to explore the underlying mechanisms of the bFGF in dental pulp repair and regeneration and 2) in addition, to shed light on the potential therapeutic strategies of the bFGF in dental pulp–related clinical applications.
Collapse
Affiliation(s)
- Keyue Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Sijing Yu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bo Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
17
|
Daulbayev C, Sultanov F, Aldasheva M, Abdybekova A, Bakbolat B, Shams M, Chekiyeva A, Mansurov Z. Nanofibrous biologically soluble scaffolds as an effective drug delivery system. CR CHIM 2021. [DOI: 10.5802/crchim.58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Okamoto M, Matsumoto S, Sugiyama A, Kanie K, Watanabe M, Huang H, Ali M, Ito Y, Miura J, Hirose Y, Uto K, Ebara M, Kato R, Yamawaki-Ogata A, Narita Y, Kawabata S, Takahashi Y, Hayashi M. Performance of a Biodegradable Composite with Hydroxyapatite as a Scaffold in Pulp Tissue Repair. Polymers (Basel) 2020; 12:E937. [PMID: 32316615 PMCID: PMC7240495 DOI: 10.3390/polym12040937] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/14/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Vital pulp therapy is an important endodontic treatment. Strategies using growth factors and biological molecules are effective in developing pulp capping materials based on wound healing by the dentin-pulp complex. Our group developed biodegradable viscoelastic polymer materials for tissue-engineered medical devices. The polymer contents help overcome the poor fracture toughness of hydroxyapatite (HAp)-facilitated osteogenic differentiation of pulp cells. However, the composition of this novel polymer remained unclear. This study evaluated a novel polymer composite, P(CL-co-DLLA) and HAp, as a direct pulp capping carrier for biological molecules. The biocompatibility of the novel polymer composite was evaluated by determining the cytotoxicity and proliferation of human dental stem cells in vitro. The novel polymer composite with BMP-2, which reportedly induced tertiary dentin, was tested as a direct pulp capping material in a rat model. Cytotoxicity and proliferation assays revealed that the biocompatibility of the novel polymer composite was similar to that of the control. The novel polymer composite with BMP-2-induced tertiary dentin, similar to hydraulic calcium-silicate cement, in the direct pulp capping model. The BMP-2 composite upregulated wound healing-related gene expression compared to the novel polymer composite alone. Therefore, we suggest that novel polymer composites could be effective carriers for pulp capping.
Collapse
Affiliation(s)
- Motoki Okamoto
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka 565-0871, Japan; (S.M.); (M.W.); (H.H.); (M.A.); (Y.I.); (Y.T.); (M.H.)
| | - Sayako Matsumoto
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka 565-0871, Japan; (S.M.); (M.W.); (H.H.); (M.A.); (Y.I.); (Y.T.); (M.H.)
| | - Ayato Sugiyama
- Department of Basic Medicinal Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan; (A.S.); (K.K.); (R.K.)
| | - Kei Kanie
- Department of Basic Medicinal Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan; (A.S.); (K.K.); (R.K.)
| | - Masakatsu Watanabe
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka 565-0871, Japan; (S.M.); (M.W.); (H.H.); (M.A.); (Y.I.); (Y.T.); (M.H.)
| | - Hailing Huang
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka 565-0871, Japan; (S.M.); (M.W.); (H.H.); (M.A.); (Y.I.); (Y.T.); (M.H.)
| | - Manahil Ali
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka 565-0871, Japan; (S.M.); (M.W.); (H.H.); (M.A.); (Y.I.); (Y.T.); (M.H.)
| | - Yuki Ito
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka 565-0871, Japan; (S.M.); (M.W.); (H.H.); (M.A.); (Y.I.); (Y.T.); (M.H.)
| | - Jiro Miura
- Division for Interdisciplinary Dentistry, Osaka University Dental Hospital, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan;
| | - Yujiro Hirose
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; (Y.H.); (S.K.)
| | - Koichiro Uto
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1 Chome-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (K.U.); (M.E.)
| | - Mitsuhiro Ebara
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1 Chome-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan; (K.U.); (M.E.)
| | - Ryuji Kato
- Department of Basic Medicinal Science, Nagoya University, Chikusa, Nagoya 464-8601, Japan; (A.S.); (K.K.); (R.K.)
- Institute of Nano-Life-Systems, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Aika Yamawaki-Ogata
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (A.Y.-O.); (Y.N.)
| | - Yuji Narita
- Department of Cardiac Surgery, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; (A.Y.-O.); (Y.N.)
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan; (Y.H.); (S.K.)
| | - Yusuke Takahashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka 565-0871, Japan; (S.M.); (M.W.); (H.H.); (M.A.); (Y.I.); (Y.T.); (M.H.)
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, 1-8, Yamadaoka, Suita, Osaka 565-0871, Japan; (S.M.); (M.W.); (H.H.); (M.A.); (Y.I.); (Y.T.); (M.H.)
| |
Collapse
|