1
|
Zhang Z, Xiang J, Xiao C, Zhu R, Zheng Y, Yi Y, Wang J, Xiong X. Condylar osseous changes following conservative therapies: A cone-beam computed tomography longitudinal study on adult patients with degenerative temporomandibular joint disease. J Craniomaxillofac Surg 2024:S1010-5182(24)00345-7. [PMID: 39672699 DOI: 10.1016/j.jcms.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024] Open
Abstract
This retrospective study aimed to comprehensively investigate the impact of non-surgical treatments on condylar osseous changes in adult patients with degenerative joint disease (DJD). Radiographic and clinical data were collected for analysis. Cone-beam computed tomography (CBCT) was used to diagnose DJD, including flattening, erosion, osteophytes, sclerosis and cysts. Condylar osseous changes were divided into three classifications: progression, stability and remission. Kaplan-Meier analyses were performed to evaluate progression-free probability. Hazard ratios (HRs) of overall and specific DJD progression were calculated with multivariate Cox analysis. Hyaluronic acid (HA) injection significantly reduced the progression-free probability (P = 0.0312). HRs of progression after stabilization splint (SS) treatment within one year, glucosamine treatment within six months and HA injection was 3.41 (95% CI: 1.70-6.84; P = 0.0005), 0.35 (95% CI: 0.14-0.86; P = 0.0226), and 1.84 (95% CI: 1.06-3.20; P = 0.0313), respectively. HRs of progression of flattening, erosion, osteophyte, and sclerosis adjusted for gender and age after HA injection were 2.77 (95% CI: 1.32-5.81; P = 0.0071), 2.12 (95% CI: 1.09-4.10; P = 0.0264), 3.38 (95% CI: 1.08-10.54; P = 0.0361) and 2.78 (95% CI: 1.02-7.52; P = 0.0447) respectively. HA injection and SS treatment were possible risk factors for TMJ deterioration, while glucosamine treatment was possible protective factor against TMJ deterioration.
Collapse
Affiliation(s)
- Zihan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jie Xiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chuqiao Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rui Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yunhao Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yating Yi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jun Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - Xin Xiong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Liu L, He G, Li Y, Xian Y, He G, Hong Y, Zhang C, Wu D. Hyaluronic Acid-Based Microparticles with Lubrication and Anti-Inflammation for Alleviating Temporomandibular Joint Osteoarthritis. Biomater Res 2024; 28:0073. [PMID: 39247653 PMCID: PMC11377958 DOI: 10.34133/bmr.0073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 08/10/2024] [Indexed: 09/10/2024] Open
Abstract
The pathogenesis of temporomandibular joint osteoarthritis (TMJOA) is closely associated with mechanical friction, which leads to the up-regulation of inflammatory mediators and the degradation of articular cartilage. Injectable drug-loaded microparticles have attracted widespread interest in intra-articular treatment of TMJOA by providing lubrication and facilitating localized drug delivery. Herein, a hyaluronic acid-based microparticle is developed with excellent lubrication properties, drug loading capacity, antioxidant activity, and anti-inflammatory effect for the treatment of TMJOA. The microparticles are facilely prepared by the self-assembly of 3-aminophenylboronic acid-modified hyaluronic acid (HP) through hydrophobic interaction in an aqueous solution, which can further encapsulate diol-containing drugs through dynamic boronate ester bonds. The resulting microparticles demonstrate excellent injectability, lubrication properties, radical scavenging efficiency, and antibacterial activity. Additionally, the drug-loaded microparticles exhibit a favorable cytoprotective effect on chondrocyte cells in vitro under an oxidative stress microenvironment. In vivo experiments validate that intra-articular injection of drug-loaded microparticles effectively alleviates osteoporosis-like damage, suppresses inflammatory response, and facilitates matrix regeneration in the treatment of TMJOA. The HP microparticles demonstrate excellent injectability and encapsulation capacity for diol-containing drugs, highlighting its potential as a versatile drug delivery vehicle in the intra-articular treatment of TMJOA.
Collapse
Affiliation(s)
- Lei Liu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Gang He
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yixi Li
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiwen Xian
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guixian He
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Yonglong Hong
- Department of Maxillofacial Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, China
| | - Chong Zhang
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Decheng Wu
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
3
|
Chang W, Chen L, Chen K. The bioengineering application of hyaluronic acid in tissue regeneration and repair. Int J Biol Macromol 2024; 270:132454. [PMID: 38763255 DOI: 10.1016/j.ijbiomac.2024.132454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
The multifaceted role of hyaluronic acid (HA) across diverse biomedical disciplines underscores its versatility in tissue regeneration and repair. HA hydrogels employ different crosslinking including chemical (chitosan, collagen), photo- initiation (riboflavin, LAP), enzymatic (HRP/H2O2), and physical interactions (hydrogen bonds, metal coordination). In biophysics and biochemistry, HA's signaling pathways, primarily through CD44 and RHAMM receptors, modulate cell behavior (cell migration; internalization of HA), inflammation, and wound healing. Particularly, smaller HA fragments stimulate inflammatory responses through toll-like receptors, impacting macrophages and cytokine expression. HA's implications in oncology highlight its involvement in tumor progression, metastasis, and treatment. Elevated HA in tumor stroma impacts apoptosis resistance and promotes tumor growth, presenting potential therapeutic targets to halt tumor progression. In orthopedics, HA's presence in synovial fluid aids in osteoarthritis management, as its supplementation alleviates pain, enhances synovial fluid's viscoelastic properties, and promotes cartilage integrity. In ophthalmology, HA's application in dry eye syndrome addresses symptoms by moisturizing the eyes, replenishing tear film deficiencies, and facilitating wound healing. Intravitreal injections and hydrogel-based systems offer versatile approaches for drug delivery and vitreous humor replacement. For skin regeneration and wound healing, HA hydrogel dressings exhibit exceptional properties by promoting moist wound healing and facilitating tissue repair. Integration of advanced regenerative tools like stem cells and solubilized amnion membranes into HA-based systems accelerates wound closure and tissue recovery. Overall, HA's unique properties and interactions render it a promising candidate across diverse biomedical domains, showcasing immense potentials in tissue regeneration and therapeutic interventions. Nevertheless, many detailed cellular and molecular mechanisms of HA and its applications remain unexplored and warrant further investigation.
Collapse
Affiliation(s)
- WeiTing Chang
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan
| | - LiRu Chen
- Department of Physical Medicine and Rehabilitation, Mackay Memorial Hospital, Taipei, Taiwan; Department of Mechanical Engineering, National YangMing ChiaoTung University, Hsinchu, Taiwan
| | - KuoHu Chen
- Department of Obstetrics and Gynecology, Taipei Tzu-Chi Hospital, The Buddhist Tzu-Chi Medical Foundation, Taipei, Taiwan; School of Medicine, Tzu-Chi University, Hualien, Taiwan.
| |
Collapse
|
4
|
Kim TH, Heo SY, Chandika P, Kim YM, Kim HW, Kang HW, Je JY, Qian ZJ, Kim N, Jung WK. A literature review of bioactive substances for the treatment of periodontitis: In vitro, in vivo and clinical studies. Heliyon 2024; 10:e24216. [PMID: 38293511 PMCID: PMC10826675 DOI: 10.1016/j.heliyon.2024.e24216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 12/16/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
Periodontitis is a common chronic inflammatory disease of the supporting tissues of the tooth that involves a complex interaction of microorganisms and various cell lines around the infected site. To prevent and treat this disease, several options are available, such as scaling, root planning, antibiotic treatment, and dental surgeries, depending on the stage of the disease. However, these treatments can have various side effects, including additional inflammatory responses, chronic wounds, and the need for secondary surgery. Consequently, numerous studies have focused on developing new therapeutic agents for more effective periodontitis treatment. This review explores the latest trends in bioactive substances with therapeutic effects for periodontitis using various search engines. Therefore, this study aimed to suggest effective directions for therapeutic approaches. Additionally, we provide a summary of the current applications and underlying mechanisms of bioactive substances, which can serve as a reference for the development of periodontitis treatments.
Collapse
Affiliation(s)
- Tae-Hee Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Seong-Yeong Heo
- Jeju Marine Research Center, Korea Institute of Ocean Science & Technology (KIOST), Jeju, 63349, Republic of Korea
| | - Pathum Chandika
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun-Woo Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Marine Biology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Hyun Wook Kang
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Jae-Young Je
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Human Bioconvergence, School of Smart Healthcare, Pukyong National University, Busan, 48513, Republic of Korea
| | - Zhong-Ji Qian
- College of Food Science and Technology, School of Chemistry and Environment, Guangdong Ocean University, Zhanjiang, 524088, China
- Shenzhen Institute of Guangdong Ocean University, Guangdong Ocean University, Shenzhen, 518108, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhanjiang, 524025, China
| | - Namwon Kim
- Ingram School of Engineering, Texas State University, San Marcos, TX, 78666, USA
- Materials Science, Engineering, and Commercialization (MSEC), Texas State University, San Marcos, TX, 78666, USA
| | - Won-Kyo Jung
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| |
Collapse
|
5
|
Tripathi AS, Zaki MEA, Al-Hussain SA, Dubey BK, Singh P, Rind L, Yadav RK. Material matters: exploring the interplay between natural biomaterials and host immune system. Front Immunol 2023; 14:1269960. [PMID: 37936689 PMCID: PMC10627157 DOI: 10.3389/fimmu.2023.1269960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/02/2023] [Indexed: 11/09/2023] Open
Abstract
Biomaterials are widely used for various medical purposes, for instance, implants, tissue engineering, medical devices, and drug delivery systems. Natural biomaterials can be obtained from proteins, carbohydrates, and cell-specific sources. However, when these biomaterials are introduced into the body, they trigger an immune response which may lead to rejection and failure of the implanted device or tissue. The immune system recognizes natural biomaterials as foreign substances and triggers the activation of several immune cells, for instance, macrophages, dendritic cells, and T cells. These cells release pro-inflammatory cytokines and chemokines, which recruit other immune cells to the implantation site. The activation of the immune system can lead to an inflammatory response, which can be beneficial or detrimental, depending on the type of natural biomaterial and the extent of the immune response. These biomaterials can also influence the immune response by modulating the behavior of immune cells. For example, biomaterials with specific surface properties, such as charge and hydrophobicity, can affect the activation and differentiation of immune cells. Additionally, biomaterials can be engineered to release immunomodulatory factors, such as anti-inflammatory cytokines, to promote a tolerogenic immune response. In conclusion, the interaction between biomaterials and the body's immune system is an intricate procedure with potential consequences for the effectiveness of therapeutics and medical devices. A better understanding of this interplay can help to design biomaterials that promote favorable immune responses and minimize adverse reactions.
Collapse
Affiliation(s)
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammad lbn Saud Islamic University, Riyadh, Saudi Arabia
| | - Bidhyut Kumar Dubey
- Department of Pharmaceutical Chemistry, Era College of Pharmacy, Era University, Lucknow, India
| | - Prabhjot Singh
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Laiba Rind
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| | - Rajnish Kumar Yadav
- Department of Pharmacology, Era College of Pharmacy, Era University, Lucknow, India
| |
Collapse
|
6
|
Bernetti A, Agostini F, Paoloni M, Raele MV, Farì G, Megna M, Mangone M. Could Hyaluronic Acid Be Considered as a Senomorphic Agent in Knee Osteoarthritis? A Systematic Review. Biomedicines 2023; 11:2858. [PMID: 37893231 PMCID: PMC10604344 DOI: 10.3390/biomedicines11102858] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/19/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Knee osteoarthritis (KOA) is one of the most common causes of disability in elderly patients and tends to be a major burden on social and health care spending. Despite its severe socioeconomic impact, KOA remains, to date, an incurable disease. Due to its proper characteristics, KOA represents a favorable disease model for experimenting with senotherapeutics, a group of treatments that counteract the development of age-related disorders and chronic diseases. In recent years, the use of intra-articular hyaluronic acid (IAHA) in the treatment of diseases related to the wear and tear of the articular cartilage has been gaining popularity. Given its ability in joint lubrification, shock absorption, and cell signaling, our aim is to investigate, through the existing scientific literature, its potential role as a senomorphic agent, emphasizing its crucial function in KOA patients. Indeed, senomorphics are a particular group of senotherapeutics capable of modulating the functions and morphology of senescent cells to those of young cells or delaying the progression of young cells to senescent cells in tissues. METHODS A search in the scientific literature (PubMed, Cochrane Library, and Google Scholar) was carried out from 2019 to 2023, thus the last 5 years. RESULTS One hundred thirty-eight articles were found concerning the role of hyaluronic acid injections in KOA patients. In these studies, its therapeutic efficacy, its anti-inflammatory properties, and its low risk of side effects emerged. CONCLUSION IAHA injections are a valuable treatment option for KOA while they can provide pain relief, improve joint function, and slow the progression of joint degeneration. The inhibitory effect of HA on MMP13 and its action as a senomorphic agent suggests that it may have additional benefits beyond its lubricating and shock-absorbing properties. In order to clarify its mechanisms of action and to optimize its clinical use, further studies are definitely needed.
Collapse
Affiliation(s)
- Andrea Bernetti
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento, 73100 Lecce, Italy;
| | - Francesco Agostini
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, 00189 Rome, Italy; (F.A.); (M.P.); (M.M.)
| | - Marco Paoloni
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, 00189 Rome, Italy; (F.A.); (M.P.); (M.M.)
| | - Maria Vittoria Raele
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Aldo Moro University, 70121 Bari, Italy; (M.V.R.); (M.M.)
| | - Giacomo Farì
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), Università del Salento, 73100 Lecce, Italy;
| | - Marisa Megna
- Department of Translational Biomedicine and Neuroscience (DiBraiN), Aldo Moro University, 70121 Bari, Italy; (M.V.R.); (M.M.)
| | - Massimiliano Mangone
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, Sapienza University, 00189 Rome, Italy; (F.A.); (M.P.); (M.M.)
| |
Collapse
|
7
|
Wen S, Iturriaga V, Vásquez B, del Sol M. Comparison of Four Treatment Protocols with Intra-Articular Medium Molecular Weight Hyaluronic Acid in Induced Temporomandibular Osteoarthritis: An Experimental Study. Int J Mol Sci 2023; 24:14130. [PMID: 37762430 PMCID: PMC10531553 DOI: 10.3390/ijms241814130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
The aim was to compare the effect between a single intra-articular infiltration (1i) and two infiltrations (2i) of medium molecular weight hyaluronic acid (MMW-HA) of high viscosity (HV) and low viscosity (LV) on the histopathological characteristics of temporomandibular joint (TMJ) osteoarthritis (OA) induced in rabbits. An experimental study was conducted on Oryctolagus cuniculus rabbits, including 42 TMJs, distributed between (1) TMJ-C, control group; (2) TMJ-OA, group with OA; (3) TMJ-OA-wt, group with untreated OA; (4) group treated with HA-HV-1i; (5) group treated with HA-HV-2i; (6) group treated with HA-LV-1i; and (7) group treated with HA-LV-2i. The results were evaluated using the Osteoarthritis Research Society International (OARSI) scale and descriptive histology considering the mandibular condyle (MC), the articular disc (AD), and the mandibular fossa (MF). The Kruskal-Wallis test was used for the statistical analysis, considering p < 0.05 significant. All treated groups significantly decreased the severity of OA compared to the TMJ-OA-wt group. The HA-HV-2i group showed significant differences in the degree of OA from the TMJ-OA group. The degree of OA in the HA-HV-2i group was significantly lower than in the HA-LV-1i, HA-LV-2i, and HA-HV-1i groups. The protocol that showed better results in repairing the joint was HA-HV-2i. There are histological differences depending on the protocol of the preparation used: two infiltrations seem to be better than one, and when applying two doses, high viscosity shows better results.
Collapse
Affiliation(s)
- Schilin Wen
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile;
- Grupo de Investigación de Pregrado en Odontología, Facultad de Ciencias de la Salud (FACSA), Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Veronica Iturriaga
- Temporomandibular Disorder and Orofacial Pain Program, Department of Integral Adult Care Dentistry, Universidad de La Frontera, Temuco 4780000, Chile;
- Sleep & Pain Research Group, Faculty of Dentistry, Universidad de La Frontera, Temuco 4780000, Chile
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco 4780000, Chile
| | - Bélgica Vásquez
- Department of Basic Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Mariano del Sol
- Doctoral Program in Morphological Sciences, Faculty of Medicine, Universidad de La Frontera, Temuco 4780000, Chile;
- Center of Excellence in Morphological and Surgical Studies (CEMyQ), Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
8
|
Ananias FEF, Santos VABD, Groppo FC, Henriques GEP, Toledo JR, da Silva Pais R, Figueroba SR. Inflammatory and degenerative effects of induced osteoarthritis/rheumatoid arthritis models on temporomandibular joint of rats. Arch Oral Biol 2023; 150:105693. [PMID: 37030192 DOI: 10.1016/j.archoralbio.2023.105693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
OBJECTIVE The present study compared three models of induction of osteoarthritis (OA) and rheumatoid arthritis (RA) in the temporomandibular joint (TMJ) of rats. DESIGN The induction method was by injection of complete Freund's adjuvant (CFA) + type II bovine collagen (CII). Twenty-four adult male rats were divided into four groups (n = 6): G1: Sham, 50 μL of 0.9% sodium chloride at the base of the tail and in each TMJ; G2: OA, 50 μL CFA+CII in each TMJ; G3: RA+OA, 100 μL of CFA+CII at the base of the tail and 50 μL CFA+CII in each TMJ; G4: RA, 100 μL of CFA+CII at the base of the tail. All injections were repeated 5 days later. Twenty-three days after the first injection, the animals were sacrificed and the TMJs were submitted to histomorphometric analysis and measurement of cytokines. The Kruskal-Wallis and Dunn tests were used (alpha=0.05). RESULTS The total thickness of the condylar cartilage increased in G2 in relation to the other groups, G3 and G4 reduced in relation to G1; and G2 and G4 reduced in relation to G2 and G3. The levels of IL-1β, IL-6 and TNF-α increased in the three induction models compared to G1. The level of IL-10 increased in G2 compared to the other groups and reduced in G3 and G4 compared to G1. CONCLUSION CFA+CII induced inflammation and degeneration compatible with RA (advanced chronic stage) when injected in the tail, and compatible with OA (acute stage or early disease) when injected only in the TMJ.
Collapse
|
9
|
Wu CB, Sun HJ, Sun NN, Zhou Q. Analysis of the Curative Effect of Temporomandibular Joint Disc Release and Fixation Combined with Chitosan Injection in the Treatment of Temporomandibular Joint Osteoarthrosis. J Clin Med 2023; 12:jcm12041657. [PMID: 36836193 PMCID: PMC9966182 DOI: 10.3390/jcm12041657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/01/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
OBJECTIVE Temporomandibular joint osteoarthritis (TMJ-OA) is common in clinic. The purpose of this study was to evaluate the efficacy of disc release, fixation and chitosan injection in the treatment of TMJ-OA. METHODS From March 2021 to March 2022, 32 patients who underwent the unilateral reduction and fixation of temporomandibular joint disc release were retrospectively studied. All patients were diagnosed with TMJ-OA and were treated with chitosan injection. This group of patients was analyzed by the visual analog scale (VAS) for pain and improvement of maximum comfortable mouth opening before treatment and 6 months after treatment. A paired t-test was used to evaluate the treatment effect, and p < 0.05 indicated that the difference was statistically significant. RESULTS All 32 patients were successfully treated by surgery and chitosan injection in the second week after operation. The duration of disease in this group ranged from 1 to 10 months, with an average of 5.7 months. After 6 months of follow up, 30 patients were satisfied with the treatment and two were unsatisfied. The difference in the treatment effect was found to be statistically significant (p < 0.05). CONCLUSIONS Temporomandibular joint disc release and fixation combined with chitosan injection is effective in the treatment of TMJ-OA.
Collapse
|
10
|
Hegab AF, Hameed HIAA, Hassaneen AM, Hyder A. Synergistic effect of platelet rich plasma with hyaluronic acid injection following arthrocentesis to reduce pain and improve function in TMJ osteoarthritis. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2023; 124:101340. [PMID: 36414172 DOI: 10.1016/j.jormas.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/20/2022]
Abstract
Increasing evidence supports the use of platelet-rich plasma (PRP) combined with hyaluronic acid (HA) for the treatment of knee osteoarthritis, which effectively promotes cartilage repair. This study aimed to determine whether injection of PRP+HA following arthrocentesis reduces pain and improves maximum incisal opening. This was a single-blind, prospective, randomized control study. The patients were selected based on the Hegab classification: Group I: patients treated with arthrocentesis followed by a single PRP injection; Group II (Control): patients treated with arthrocentesis followed by a single HA injection; and Group III: patients treated with arthrocentesis followed by a single PRP+HA combination injection. The primary predictor variable was the medication used for injection. The primary outcome variables were the maximum voluntary mouth opening and pain index scores. The secondary outcome variable was joint sounds. All outcome variables were assessed and compared among the three groups at baseline and at 1-, 3-, 6-, and 12-month intervals. Other variables, including patients' age and sex, were evaluated in relation to the patient outcomes. Injecting PRP+HA showed statistically significant improvement in the primary and secondary treatment outcomes over PRP or HA injection throughout the study period (P<0.005). Injection of PRP+HA following arthrocentesis had significant long-term clinical efficacy regarding pain relief that considered the main concern of both the patient and clinician.
Collapse
Affiliation(s)
- Ayman F Hegab
- Faculty of Dentistry, Al-Azhar University, Cairo, Egypt
| | | | | | | |
Collapse
|
11
|
Temporomandibular Joint Osteoarthritis: Pathogenic Mechanisms Involving the Cartilage and Subchondral Bone, and Potential Therapeutic Strategies for Joint Regeneration. Int J Mol Sci 2022; 24:ijms24010171. [PMID: 36613615 PMCID: PMC9820477 DOI: 10.3390/ijms24010171] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The temporomandibular joint (TMJ) is a specialized synovial joint that is crucial for the movement and function of the jaw. TMJ osteoarthritis (TMJ OA) is the result of disc dislocation, trauma, functional overburden, and developmental anomalies. TMJ OA affects all joint structures, including the articular cartilage, synovium, subchondral bone, capsule, ligaments, periarticular muscles, and sensory nerves that innervate the tissues. The present review aimed to illustrate the main pathomechanisms involving cartilage and bone changes in TMJ OA and some therapeutic options that have shown potential restorative properties regarding these joint structures in vivo. Chondrocyte loss, extracellular matrix (ECM) degradation, and subchondral bone remodeling are important factors in TMJ OA. The subchondral bone actively participates in TMJ OA through an abnormal bone remodeling initially characterized by a loss of bone mass, followed by reparative mechanisms that lead to stiffness and thickening of the condylar osteochondral interface. In recent years, such therapies as intraarticular platelet-rich plasma (PRP), hyaluronic acid (HA), and mesenchymal stem cell-based treatment (MSCs) have shown promising results with respect to the regeneration of joint structures or the protection against further damage in TMJ OA. Nevertheless, PRP and MSCs are more frequently associated with cartilage and/or bone repair than HA. According to recent findings, the latter could enhance the restorative potential of other therapies (PRP, MSCs) when used in combination, rather than repair TMJ structures by itself. TMJ OA is a complex disease in which degenerative changes in the cartilage and bone develop through intricate mechanisms. The regenerative potential of such therapies as PRP, MSCs, and HA regarding the cartilage and subchondral bone (alone or in various combinations) in TMJ OA remains a matter of further research, with studies sometimes obtaining discrepant results.
Collapse
|
12
|
Mélou C, Pellen-Mussi P, Jeanne S, Novella A, Tricot-Doleux S, Chauvel-Lebret D. Osteoarthritis of the Temporomandibular Joint: A Narrative Overview. MEDICINA (KAUNAS, LITHUANIA) 2022; 59:medicina59010008. [PMID: 36676632 PMCID: PMC9866170 DOI: 10.3390/medicina59010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/14/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Background and Objectives: This study reviewed the literature to summarize the current and recent knowledge of temporomandibular joint osteoarthritis (TMJOA). Methods: Through a literature review, this work summarizes many concepts related to TMJOA. Results: Although many signaling pathways have been investigated, the etiopathogenesis of TMJOA remains unclear. Some clinical signs are suggestive of TMJOA; however, diagnosis is mainly based on radiological findings. Treatment options include noninvasive, minimally invasive, and surgical techniques. Several study models have been used in TMJOA studies because there is no gold standard model. Conclusion: More research is needed to develop curative treatments for TMJOA, which could be tested with reliable in vitro models, and to explore tissue engineering to regenerate damaged temporomandibular joints.
Collapse
Affiliation(s)
- Caroline Mélou
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
| | - Pascal Pellen-Mussi
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Sylvie Jeanne
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
| | - Agnès Novella
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Sylvie Tricot-Doleux
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
| | - Dominique Chauvel-Lebret
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University Rennes, UMR 6226, 35000 Rennes, France
- CHU Rennes, Pôle d’Odontologie, 35033 Rennes, France
- UFR Odontologie, 35043 Rennes, France
- Correspondence: ; Tel.: +33-2-23-23-43-64; Fax: +33-2-23-23-43-93
| |
Collapse
|
13
|
Wu Y, Wang F, Shi Y, Lin G, Qiao J, Wang L. Molecular dynamics simulation of hyaluronic acid hydrogels: Effect of water content on mechanical and tribological properties. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2022; 226:107169. [PMID: 36208538 DOI: 10.1016/j.cmpb.2022.107169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/26/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND AND OBJECTIVE Recently conducted biomedical studies have shown that the drug diffusivity of hyaluronic acid hydrogel plays an important role in the treatment of joint diseases. The drug diffusivity is closely related to the water content of hydrogel. In addition, different water content will not only affect its mechanical and tribological properties, but also change the effect of drug release. METHODS In this work, a Molecular dynamics simulation was used to investigate the effect of water content on spatial distribution, tribological and mechanical properties of a hyaluronic acid hydrogel network. This paper focuses on the analysis and calculation of the radial distribution function of 20, 40, 60, and 80% water content model and the friction force and mechanical parameters under the influence of different load and friction speed. RESULTS The results show that at 20 and 40% water content, the spatial distribution is loose and the intermolecular force is not strong, resulting in a major lack in tribological and mechanical properties; whereas at 60 and 80% water content, the spatial distribution becomes gradually compact and the intermolecular force is gradually increased. The tribological and mechanical properties manifest a marked improvement. CONCLUSIONS The calculations reveal that the hydrogel model has the best wear resistance, pressure resistance, and plastic deformation resistance at 80% water content. In the range of 20-80% water content, the mechanical properties and friction properties of hydrogels become better and better with the increase of water content.
Collapse
Affiliation(s)
- Yuyao Wu
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Fei Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China.
| | - Yanbin Shi
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China; School of Arts and Design, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Guimei Lin
- School of Pharmaceutical Science, Shandong University, Jinan 250012, China
| | - Jinwei Qiao
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; Shandong Institute of Mechanical Design and Research, Jinan 250031, China
| |
Collapse
|
14
|
Marinho A, Nunes C, Reis S. Hyaluronic Acid: A Key Ingredient in the Therapy of Inflammation. Biomolecules 2021; 11:1518. [PMID: 34680150 PMCID: PMC8533685 DOI: 10.3390/biom11101518] [Citation(s) in RCA: 135] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 02/08/2023] Open
Abstract
Hyaluronic acid (HA) is a natural polymer, produced endogenously by the human body, which has unique physicochemical and biological properties, exhibiting desirable biocompatibility and biodegradability. Therefore, it has been widely studied for possible applications in the area of inflammatory diseases. Although exogenous HA has been described as unable to restore or replace the properties and activities of endogenous HA, it can still provide satisfactory pain relief. This review aims to discuss the advances that have been achieved in the treatment of inflammatory diseases using hyaluronic acid as a key ingredient, essentially focusing on studies carried out between the years 2017 and 2021.
Collapse
Affiliation(s)
| | - Cláudia Nunes
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia da Universidade do Porto, 4050-313 Porto, Portugal; (A.M.); (S.R.)
| | | |
Collapse
|
15
|
Derwich M, Mitus-Kenig M, Pawlowska E. Mechanisms of Action and Efficacy of Hyaluronic Acid, Corticosteroids and Platelet-Rich Plasma in the Treatment of Temporomandibular Joint Osteoarthritis-A Systematic Review. Int J Mol Sci 2021; 22:ijms22147405. [PMID: 34299024 PMCID: PMC8308010 DOI: 10.3390/ijms22147405] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/20/2022] Open
Abstract
Temporomandibular joint osteoarthritis (TMJ OA) is a low-inflammatory disorder with multifactorial etiology. The aim of this review was to present the current state of knowledge regarding the mechanisms of action and the efficacy of hyaluronic acid (HA), corticosteroids (CS) and platelet-rich plasma (PRP) in the treatment of TMJ OA.: The PubMed database was analyzed with the keywords: "(temporomandibular joint) AND ((osteoarthritis) OR (dysfunction) OR (disorders) OR (pain)) AND ((treatment) OR (arthrocentesis) OR (arthroscopy) OR (injection)) AND ((hyaluronic acid) OR (corticosteroid) OR (platelet rich plasma))". After screening of 363 results, 16 studies were included in this review. Arthrocentesis alone effectively reduces pain and improves jaw function in patients diagnosed with TMJ OA. Additional injections of HA, either low-molecular-weight (LMW) HA or high-molecular-weight (HMW) HA, or CS at the end of the arthrocentesis do not improve the final clinical outcomes. CS present several negative effects on the articular cartilage. Results related to additional PRP injections are not consistent and are rather questionable. Further studies should be multicenter, based on a larger group of patients and should answer the question of whether other methods of TMJ OA treatment are more beneficial for the patients than simple arthrocentesis.
Collapse
Affiliation(s)
- Marcin Derwich
- ORTODENT, Specialist Orthodontic Private Practice in Grudziadz, 86-300 Grudziadz, Poland
- Correspondence: ; Tel.: +48-660-723-164
| | - Maria Mitus-Kenig
- Department of Experimental Dentistry and Prophylaxis, Medical College, Jagiellonian University in Krakow, 31-008 Krakow, Poland;
| | - Elzbieta Pawlowska
- Department of Orthodontics, Medical University of Lodz, 90-419 Lodz, Poland;
| |
Collapse
|
16
|
Liu X, Feng Y, Liu W, Li H, Hu Z, Hu S, Ke J, Long X. Toll‐like receptor 2 mediates the degeneration of cartilage in experimental inflammatory TMJOA. Oral Dis 2020. [DOI: 10.1111/odi.13744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xin Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan China
| | - Yaping Feng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan China
| | - Wen Liu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan China
| | - Huimin Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan China
| | - Zhihui Hu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan China
| | - Shiyu Hu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan China
| | - Jin Ke
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan China
| | - Xing Long
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei‐MOST) & Key Laboratory of Oral Biomedicine Ministry of Education School & Hospital of Stomatology Wuhan University Wuhan China
- Department of Oral and Maxillofacial Surgery School & Hospital of Stomatology Wuhan University Wuhan China
| |
Collapse
|