1
|
Odo A, Kunimatsu R, Abe T, Sakata S, Nakatani A, Rikitake K, Koizumi Y, Tanabe I, Okimura N, Yoshimi Y, Tanimoto K. Stem cells derived from human exfoliated deciduous teeth-based media in a rat root resorption model. Arch Oral Biol 2024; 158:105854. [PMID: 38056228 DOI: 10.1016/j.archoralbio.2023.105854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 11/14/2023] [Accepted: 11/20/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVE Root resorption may occur during orthodontic treatment. Herein, we investigated the effect of a culture supernatant of stem cells derived from human exfoliated deciduous teeth on root resorption. DESIGN Twelve 8-week-old male Sprague-Dawley rats were used, and their maxillary first molars were pulled with excessive orthodontic force to induce root resorption. On days 1 and 7 after traction initiation, stem cells derived from human exfoliated deciduous teeth and alpha minimum essential medium (control group) were administered. After 14 days, the maxillary bone was evaluated for tooth movement. The expression of osteoprotegerin, receptor activator of nuclear factor κB ligand, tumor necrosis factor α, interleukin 1β, interleukin 6, and interleukin 17 was evaluated on the compression side and tension side. RESULTS No significant difference in tooth movement was observed between the two groups. Root resorption decreased in the group administered the culture supernatant compared with in the control. Immunohistochemical staining revealed increased osteoprotegerin expression and decreased receptor activators for nuclear factor κB ligand, tumor necrosis factor α, interleukin 1β, interleukin 6, and interleukin 17 on the compression side and tension side. CONCLUSIONS Administration of stem cells derived from human exfoliated deciduous teeth affected the expression of osteoprotegerin, receptor activator of nuclear factor κB ligand, tumor necrosis factor α, interleukin 1β, interleukin 6 and interleukin 17; hence, these stem cells may inhibit root resorption by regulating their expression.
Collapse
Affiliation(s)
- Ayaka Odo
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan.
| | - Takaharu Abe
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Japan
| | - Shuzo Sakata
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Japan
| | - Ayaka Nakatani
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Japan
| | - Kodai Rikitake
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Japan
| | - Yuma Koizumi
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Japan
| | - Izumi Tanabe
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Naonobu Okimura
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| | - Yuki Yoshimi
- Department of Orthodontics, Division of Oral Health and Development, Hiroshima University Hospital, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Japan
| |
Collapse
|
2
|
Nakatani A, Kunimatsu R, Tsuka Y, Sakata S, Ito S, Kado I, Putranti NAR, Terayama R, Tanimoto K. High-frequency near-infrared semiconductor laser irradiation suppressed experimental tooth movement-induced inflammatory pain markers in the periodontal ligament tissues of rats. Lasers Med Sci 2023; 38:109. [PMID: 37081363 DOI: 10.1007/s10103-023-03761-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023]
Abstract
High-frequency near-infrared (NIR) semiconductor laser-irradiation has an unclear effect on nociception in the compressed lateral periodontal ligament region, a peripheral nerve region. This study aimed to investigate the effects of NIR semiconductor laser irradiation, with a power of 120 J, on inflammatory pain markers and neuropeptides induced in the compressed lateral periodontal ligament area during ETM. A NIR semiconductor laser [910 nm wavelength, 45 W maximum output power, 300 mW average output power, 30 kHz frequency, and 200 ns pulse width (Lumix 2; Fisioline, Verduno, Italy)] was used. A nickel-titanium closed coil that generated a 50-g force was applied to the maxillary left-side first molars and incisors in 7-week-old Sprague-Dawley (280-300 g) rats to induce experimental tooth movement (ETM) for 24 h. Ten rats were divided into two groups (ETM + laser, n = 5; ETM, n = 5). The right side of the ETM group (i.e., the side without induced ETM) was evaluated as the untreated group. We performed immunofluorescent histochemistry analysis to quantify the interleukin (IL)-1β, cyclooxygenase-2 (COX2), prostaglandin E2 (PGE2), and neuropeptide [calcitonin gene-related peptide (CGRP)] expression in the compressed region of the periodontal tissue. Post-hoc Tukey-Kramer tests were used to compare the groups. Compared with the ETM group, the ETM + laser group showed significant suppression in IL-1β (176.2 ± 12.3 vs. 310.8 ± 29.5; P < 0.01), PGE2 (104.4 ± 14.34 vs. 329.6 ± 36.52; P < 0.01), and CGRP (36.8 ± 4.88 vs. 78.0 ± 7.13; P < 0.01) expression. High-frequency NIR semiconductor laser irradiation exerts significant effects on ETM-induced inflammation. High-frequency NIR semiconductor laser irradiation can reduce periodontal inflammation during orthodontic tooth movement.
Collapse
Affiliation(s)
- Ayaka Nakatani
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| | - Yuji Tsuka
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Shuzo Sakata
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Shota Ito
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Isamu Kado
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Nurul Aisyah Rizky Putranti
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| | - Ryuji Terayama
- Department of Maxillofacial Anatomy and Neuroscience, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Developmental Biology, Hiroshima University Graduate School of Biomedical Sciences, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan
| |
Collapse
|
3
|
Bajek-Bil A, Chmiel M, Włoch A, Stompor-Gorący M. Baicalin-Current Trends in Detection Methods and Health-Promoting Properties. Pharmaceuticals (Basel) 2023; 16:ph16040570. [PMID: 37111327 PMCID: PMC10146343 DOI: 10.3390/ph16040570] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/22/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
Baicalin (7-D-glucuronic acid-5,6-dihydroxyflavone) belongs to natural flavonoids extracted from the roots of Scutellaria baicalensis, the plant used in traditional Chinese medicine. It has been proven that baicalin has various pharmacological activities, such as antioxidant, anti-inflammatory, anticancer, antibacterial, and anti-apoptotic ones. However, it is essential not only to determine the medical usefulness of baicalin, but also to find and develop the most effective methods for its extraction and detection. Therefore, the aim of this review was to summarize the current methods of detection and identification of baicalin and to present the medical applications of baicalin and the underlying mechanisms of its action. Based on the review of the latest literature, it can be concluded that liquid chromatography alone or together with mass spectrometry is the most commonly used method for the determination of baicalin. Recently, also new electrochemical methods have been established, e.g., biosensors with fluorescence, which have better detection limits, sensitivity, and selectivity.
Collapse
Affiliation(s)
- Agata Bajek-Bil
- Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland
| | - Marcelina Chmiel
- Institute of Medical Sciences, University of Rzeszów, 35-959 Rzeszów, Poland
| | - Aleksandra Włoch
- Department of Physics and Biophysics, Wrocław University of Environmental and Life Sciences, 50-375 Wrocław, Poland
| | | |
Collapse
|
4
|
Zou JH, Chen F, Li YL, Chen H, Sun TK, Du SM, Zhang J. Effects of green tea extract epigallocatechin-3-gallate (EGCG) on orthodontic tooth movement and root resorption in rats. Arch Oral Biol 2023; 150:105691. [PMID: 37043987 DOI: 10.1016/j.archoralbio.2023.105691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVE To study the effect of EGCG on tooth movement and root resorption during orthodontic treatment in rats. METHODS A total of thirty six male Wistar rats were randomly and equally divided into three groups: control, 50 mg/kg EGCG, and 100 mg/kg EGCG. During the experiment, the subjects were submitted to an orthodontic tooth movement (OTM) model, rats in the experimental groups were given the corresponding dose of EGCG, while rats in the control group were administrated with an equal volume of normal saline solution by gavage. After 14 days of OTM, the rats were sacrificed by transcardial perfusion. Micro-CT of rat maxillaes was taken to analyze OTM distance and root resorption. The maxillary samples were prepared as histological sections for H&E staining, tartrate-resistant acid phosphatase (TRAP) staining and immunohistochemical (IHC) staining to be observed and analyzed. RESULTS The OTM distance and root resorption of rats in the dosed group decreased, and the number of TRAP positive cells in their periodontium decreased significantly. The expression level of RANKL was decreased in the EGCG group compared to the control group, while that of OPG, OCN and Runx2 was increased. Effects were more pronounced in 100 mg/kg group than in 50 mg/kg group. CONCLUSION EGCG reduces OTM and orthodontic induced root resorption (OIRR) in rats, and is able to attenuate osteoclastogenesis on the pressure side and promote osteogenesis on the tension side.
Collapse
Affiliation(s)
- Jing-Hua Zou
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Fei Chen
- Department of Stomatology, Rizhao Traditional Chinese Medicine Hospital, Rizhao, China
| | - Yi-Lin Li
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Tong-Ke Sun
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Si-Meng Du
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.
| |
Collapse
|
5
|
Gao Y, Min Q, Li X, Liu L, Lv Y, Xu W, Liu X, Wang H. Immune System Acts on Orthodontic Tooth Movement: Cellular and Molecular Mechanisms. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9668610. [PMID: 36330460 PMCID: PMC9626206 DOI: 10.1155/2022/9668610] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/05/2022] [Accepted: 09/29/2022] [Indexed: 12/03/2022]
Abstract
Orthodontic tooth movement (OTM) is a tissue remodeling process based on orthodontic force loading. Compressed periodontal tissues have a complicated aseptic inflammatory cascade, which are considered the initial factor of alveolar bone remodeling. Since skeletal and immune systems shared a wide variety of molecules, osteoimmunology has been generally accepted as an interdisciplinary field to investigate their interactions. Unsurprisingly, OTM is considered a good mirror of osteoimmunology since it involves immune reaction and bone remolding. In fact, besides bone remodeling, OTM involves cementum resorption, soft tissue remodeling, orthodontic pain, and relapse, all correlated with immune cells and/or immunologically active substance. The aim of this paper is to review the interaction of immune system with orthodontic tooth movement, which helps gain insights into mechanisms of OTM and search novel method to short treatment period and control complications.
Collapse
Affiliation(s)
- Yajun Gao
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, China
| | - Qingqing Min
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, China
| | - Xingjia Li
- Department of Prosthodontics, Wuxi Stomatology Hospital, Wuxi, China
| | - Linxiang Liu
- Department of Implantology, Wuxi Stomatology Hospital, Wuxi, China
| | - Yangyang Lv
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, China
| | - Wenjie Xu
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, China
| | | | - Hua Wang
- Wuhu Stomatology Hospital, Wuhu, China
| |
Collapse
|
6
|
Baicalin Ameliorates Radiation-Induced Lung Injury by Inhibiting the CysLTs/CysLT1 Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2765354. [PMID: 35783527 PMCID: PMC9249482 DOI: 10.1155/2022/2765354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/06/2022] [Accepted: 05/23/2022] [Indexed: 11/28/2022]
Abstract
Objective Radiation-induced lung injury (RILI) is a common complication of radiotherapy for thoracic tumors. This study investigated the alleviating effect of baicalin (BA) on RILI and its possible mechanism. Methods RILI model was established by chest irradiation (IR) of C57BL/6 mice for 16 weeks. Different concentrations of BA were administered, and dexamethasone (DXM) was used as a positive control. Then, the lung pathological changes were observed by HE and Masson staining. The levels of TGF-β, TNF-α, IL-1β, IL-6, CysLT, LTC4, and LTE4 were measured by ELISA. The CysLT1 expression was detected by qPCR, immunohistochemistry, and western blot. Type II AEC cells were pretreated with LTD-4 to establish the RILI cell model and intervened with different concentrations of BA. Then, the collagen I protein level was measured by ELISA. The CysLT1 and α-SMA expression were detected by qPCR, immunofluorescence, and western blot. Results BA could effectively improve lung histopathological changes and pulmonary fibrosis. In vivo, BA could inhibit the levels of TGF-β, TNF-α, IL-1β, and IL-6 and reduce the levels of CysLT, LTC4, and LTE4. In vitro, different concentrations of LTD4 could reduce the viability of type II AEC cells, which could be reversed by the administration of different concentrations of BA. In addition, BA could reduce CysLT1 mRNA, as well as CysLT1 and α-SMA protein levels in vitro and in vivo. Conclusion BA attenuated lung inflammation and pulmonary fibrosis by inhibiting the CysLTs/CysLT1 pathway, thereby protecting against RILI.
Collapse
|
7
|
Kunimatsu R, Kimura A, Sakata S, Tsuka Y, Yoshimi Y, Abe T, Kado I, Yashima Y, Izumino J, Nakatani A, Kitagawa M, Miyauchi M, Takata T, Tanimoto K. Effects of baicalin on the proliferation and expression of OPG and RANKL in human cementoblast-lineage cells. J Dent Sci 2022; 17:162-169. [PMID: 35028034 PMCID: PMC8739232 DOI: 10.1016/j.jds.2021.05.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/10/2021] [Indexed: 12/12/2022] Open
Abstract
Background/purpose Baicalin, a natural bioactive flavonoid extracted from Scutellaria baicalensis Georgi, mediates bone metabolism, and recent studies have revealed that it has cell signaling properties. However, its biological functions in cementoblasts still remain unclear. This study therefore aimed to investigate the effects of baicalin on bone resorption markers, including osteoprotegerin (OPG) and receptor activator of nuclear factor-κβ ligand (RANKL), in human cementoblast-lineage cells, as well as their proliferation ability. Materials and methods Human cementoblast cell line (HCEM) cells were cultured and treated with 0, 0.01, 0.1, or 1 μM of baicalin. The proliferative capacity of cultured HCEM cells was analyzed using bromodeoxyuridine immunoassay and cell counting. The baicalin effect on OPG and RANKL expression was determined using quantitative polymerase chain reaction (qPCR) and western blotting. Furthermore, OPG expression was measured in 1 μM baicalin-treated HCEM cells in the presence or absence of the Wnt signaling pathway inhibitor, Dickkopf (Dkk)-1, using qPCR and western blotting. Results The addition of 0.01, 0.1, and 1 μM of baicalin did not significantly change the proliferative capacity of cultured HCEM cells. Compared with the non-supplemented group, baicalin increased and suppressed OPG and RANKL gene and protein expression, respectively, in a concentration-dependent manner. OPG mRNA and protein expression levels were increased by 1 μM baicalin, which was suppressed by Dkk-1 addition. Conclusion Baicalin enhanced OPG expression in HCEM cells through the Wnt/beta-catenin signaling pathway, which could contribute to periodontal tissue regeneration.
Collapse
Affiliation(s)
- Ryo Kunimatsu
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Aya Kimura
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Shuzo Sakata
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuji Tsuka
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuki Yoshimi
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takaharu Abe
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Isamu Kado
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Yuka Yashima
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Jin Izumino
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Ayaka Nakatani
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Masae Kitagawa
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Mutsumi Miyauchi
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Takashi Takata
- Department of Oral and Maxillofacial Pathobiology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan.,Tokuyama University, Tokuyama, Japan
| | - Kotaro Tanimoto
- Department of Orthodontics and Craniofacial Development Biology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
8
|
Development and Evaluation of Thermosensitive Hydrogels with Binary Mixture of Scutellariae baicalensis radix Extract and Chitosan for Periodontal Diseases Treatment. Int J Mol Sci 2021; 22:ijms222111319. [PMID: 34768748 PMCID: PMC8583119 DOI: 10.3390/ijms222111319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 01/28/2023] Open
Abstract
Scutellaria baicalensis root displays anti-inflammatory and antibacterial properties due to the presence of flavonoids, particularly baicalin, baicalein, and wogonin. Our work aimed at developing thermosensitive hydrogels containing a binary mixture of S. baicalensis radix lyophilized extract and chitosan as a novel approach for periodontal diseases treatment. Two types of chitosan were employed in preliminary studies on binary mixtures with S. baicalensis radix lyophilized extract standardized for baicalin, baicalein, and wogonin. Thermosensitive hydrogels were prepared of poloxamer 407, alginate sodium, and cellulose derivatives and evaluated in terms of rheological and mucoadhesive behavior. The presence of chitosan altered the release profile of active compounds but did not affect their in vitro permeation behavior in PAMPA assay. The synergistic effects of S. baicalensis radix lyophilized extract and chitosan toward ferrous ion-chelating activity, inhibition of hyaluronidase, and pathogen growth were observed. The thermosensitive gelling system showed shear-thinning properties, gelation temperature between 25 and 27 °C, and favorable mucoadhesiveness in contact with porcine buccal mucosa, which was enhanced in the presence of binary mixture of S. baicalensis radix extract and chitosan. The release tests showed that baicalin and baicalein were liberated in a prolonged manner with a fast onset from hydrogel formulations.
Collapse
|
9
|
Peng JX, Guan XY, Li GH, Zhong JL, Song JK, Xiao LL, Jin SH, Liu JG. Recombinant human insulin-like growth factor-1 promotes osteoclast formation and accelerates orthodontic tooth movement in rats. J Appl Oral Sci 2021; 29:e20200791. [PMID: 34008748 PMCID: PMC8128321 DOI: 10.1590/1678-7757-2020-0791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 03/12/2021] [Indexed: 11/21/2022] Open
Abstract
Background: IGF-1 may be an important factor in bone remodeling, but its mechanism of action on osteoclasts during orthodontic tooth movement is complex and unclear. Methodology: The closed-coil spring was placed between the left maxillary first molar and upper incisors with a force of 50 g to establish an orthodontic movement model. Eighty SD rats were randomized to receive phosphate buffer saline or 400 ng rhIGF-1 in the lateral buccal mucosa of the left maxillary first molar every two days. Tissue sections were stained for tartrate-resistant acidic phosphatase (TRAP), the number of TRAP-positive cells was estimated and tooth movement measured. Results: The rhIGF-1 group exhibited evidential bone resorption and lacuna appeared on the alveolar bone compared to the control group. Moreover, the number of osteoclasts in compression side of the periodontal ligament in the rhIGF-1 group peaked at day 4 (11.37±0.95 compared to 5.28±0.47 in the control group) after the orthodontic force was applied and was significantly higher than that of the control group (p<0.01). Furthermore, the distance of tooth movement in the rhIGF-1 group was significantly larger than that of the control group from day 4 to day 14 (p<0.01), suggesting that rhIGF-1 accelerated orthodontic tooth movement. Conclusion: Our study has showed that rhIGF-1 could stimulate the formation of osteoclasts in the periodontal ligament, and accelerate bone remodeling and orthodontic tooth movement.
Collapse
Affiliation(s)
- Ju-Xiang Peng
- Guiyang Stomatological Hospital Affiliated to Zunyi Medical University, Guiyang Hospital of Stomatology, Department of Orthodontic, Guiyang, China
| | - Xiao-Yan Guan
- Guiyang Stomatological Hospital Affiliated to Zunyi Medical University, Guiyang Hospital of Stomatology, Department of Orthodontic, Guiyang, China
| | - Gao-Hua Li
- Shenzhen Ai Kang Jian Stomatological Hospital, Outpatient Department of Stomatology, Shenzhen, China
| | - Jian-Li Zhong
- Guangdong Province Stomatological Hospital, Department of Orthodontic, Guangzhou, China
| | - Ju-Kun Song
- Guizhou Province People's Hospital, Department of Oral and Maxillofacial Surgery, Guiyang, China
| | - Lin-Lin Xiao
- Zunyi Medical University, School of Stomatology, Department of Orthodontic, Zunyi, China
| | - Su-Han Jin
- Zunyi Medical University, School of Stomatology, Department of Orthodontic, Zunyi, China
| | - Jian-Guo Liu
- Special Key Laboratory of Oral Diseases Research from Higher Education Institution of Guizhou Province & Zunyi Key Laboratory of Oral Disease Research, Zunyi, China
| |
Collapse
|