1
|
Wang Z, Luo W, Zhao C, Yu M, Li H, Zhou F, Wang D, Bai F, Chen T, Xiong Y, Wu Y. FoxO1-modulated macrophage polarization regulates osteogenesis via PPAR-γ signaling. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167333. [PMID: 38960054 DOI: 10.1016/j.bbadis.2024.167333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 06/06/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Periodontitis, a common chronic inflammatory disease, epitomizes a significant impairment in the host immune system and an imbalance of bone metabolism. Macrophage polarization, a dynamic process dictated by the microenvironment, intricately contributes to the interplay between the immune system and bone remodeling, namely the osteoimmune system. Forkhead box protein O1 (FoxO1) has been shown to play a dramatic role in mediating oxidative stress, bone mass, as well as cellular metabolism. Nevertheless, the function and underlying mechanisms of FoxO1 in regulating macrophage polarization-mediated osteogenesis in periodontitis remain to be further elucidated. Here, we found that FoxO1 expression was closely linked to periodontitis, accompanied by aggravated inflammation. Notably, FoxO1 knockdown skewed macrophage polarization from M1 to the antiinflammatory M2 phenotype under inflammatory conditions, which rescued the impaired osteogenic potential. Mechanistically, we revealed that the enhancement of the transcription of peroxisome proliferator-activated receptor (PPAR) signaling in FoxO1-knockdown macrophages. In agreement with this contention, GW9662, a specific inhibitor of PPAR-γ signaling, greatly aggravated macrophage polarization from M2 to the M1 phenotype and attenuated osteogenic potential under inflammatory conditions. Additionally, PPAR-γ signaling agonist rosiglitazone (RSG) was applied to address ligature-induced periodontitis with attenuated inflammation. Our data lend conceptual credence to the function of FoxO1 in mediating macrophage polarization-regulated osteogenesis which serves as a novel therapeutic target for periodontitis.
Collapse
Affiliation(s)
- Zhanqi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Wenxin Luo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chengzhi Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Muqiao Yu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Haiyun Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Feng Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dongyang Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fuwei Bai
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tao Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yi Xiong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yingying Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Daneshvar A, Nemati P, Azadi A, Amid R, Kadkhodazadeh M. M2 macrophage-derived exosomes for bone regeneration: A systematic review. Arch Oral Biol 2024; 166:106034. [PMID: 38943857 DOI: 10.1016/j.archoralbio.2024.106034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
OBJECTIVE This systematic review aims to evaluate existing evidence to investigate the therapeutic efficacy of M2 macrophage-derived exosomes in bone regeneration. DESIGN A comprehensive search between 2020 and 2024 across PubMed, Web of Science, and Scopus was conducted using a defined search strategy to identify relevant studies regarding the following question: "What is the impact of M2 macrophage-derived exosomes on bone regeneration?". Controlled in vitro and in vivo studies were included in this study. The SYRCLE tool was used to evaluate the risk of bias in the included animal studies. RESULTS This review included 20 studies published. Seven studies were selected for only in vitro analysis, whereas 13 studies underwent both in vitro and in vivo analyses. The in vivo studies employed animal models, including 163 C57BL6 mice and 73 Sprague-Dawley rats. Exosomes derived from M2 macrophages were discovered to be efficacious in promoting bone regeneration and vascularization in animal models of bone defects. These effects were primarily confirmed through morphological and histological assessments. This remarkable outcome is attributed to the regulation of multiple signaling pathways, as evidenced by the findings of 11 studies investigating the involvement of miRNAs in this intricate process. In addition, in vitro studies observed positive effects on cell proliferation, migration, osteogenesis, and angiogenesis. Heterogeneity in study methods hinders direct comparison of results across studies. CONCLUSION M2 macrophage-derived exosomes demonstrate remarkable potential for promoting bone regeneration. Further research optimizing their application and elucidating the underlying mechanisms can pave the way for clinical translation.
Collapse
Affiliation(s)
- Alireza Daneshvar
- Student Research Committee, Faculty of Dentistry, Islamic Azad University, Tehran, Iran
| | - Parisa Nemati
- Student Research Committee, Faculty of Dentistry, Islamic Azad University, Tehran, Iran
| | - Ali Azadi
- Dentofacial Deformities Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Amid
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Kadkhodazadeh
- Department of Periodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Dental Research Center, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Gangrade A, Zehtabi F, Ohe JY, Kouchehbaghi NH, Voskanian L, Haghniaz R, Shepes M, Rashad A, Ermis M, Khademhosseini A, Barros NRD. Engineered Regenerative and Adhesive Hydrogel for Concurrent Sealing and Healing of Enterocutaneous Fistulas. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39046205 DOI: 10.1021/acsami.4c05154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
In addressing the intricate challenges of enterocutaneous fistula (ECF) treatment, such as internal bleeding, effluent leakage, inflammation, and infection, our research is dedicated to introducing a regenerative adhesive hydrogel that can seal and expedite the healing process. A double syringe setup was utilized, with dopagelatin and platelet-rich plasma (PRP) in one syringe and Laponite and sodium periodate in another. The hydrogel begins to cross-link immediately after passing through a mixing tip and exhibits tissue adhesive properties. Results demonstrated that PRP deposits within the pores of the cross-linked hydrogel and releases sustainably, enhancing its regenerative capabilities. The addition of PRP further improved the mechanical properties and slowed down the degradation of the hydrogel. Furthermore, the hydrogel demonstrated cytocompatibility, hemostatic properties, and time-dependent macrophage M1 to M2 phase transition, suggesting the anti-inflammatory response of the material. In an in vitro bench test simulating high-pressure fistula conditions, the hydrogel effectively occluded pressures up to 300 mmHg. In conclusion, this innovative hydrogel holds promise for ECF treatment and diverse fistula cases, marking a significant advancement in its therapeutic approaches.
Collapse
Affiliation(s)
- Ankit Gangrade
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Fatemeh Zehtabi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Joo-Young Ohe
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
- Department of Oral & Maxillofacial Surgery, College of Dentistry, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Negar Hosseinzadeh Kouchehbaghi
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
- Department of Textile Engineering, Amirkabir University of Technology (Tehran Polytechnic), Hafez Avenue, 1591634311 Tehran, Iran
| | - Leon Voskanian
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Matan Shepes
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Ahmad Rashad
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Menekse Ermis
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
| | - Natan Roberto de Barros
- Terasaki Institute for Biomedical Innovation (TIBI), 1018 Westwood Blvd, Los Angeles, California 90095, United States
- National Laboratory of Bioscience (LNBio), National Center of Research in Energy and Materials (CNPEM), Campinas 13083-100, Brazil
| |
Collapse
|
4
|
Jahani-Sherafat S, Mollaghaei S, Asri N, Rezaei Tavirani M, Baghaei K, Rostami-Nejad M. The Effect of Photobiomodulation and Akkermansia muciniphila on THP-1 Derived Macrophage Polarization Treated with Gliadin Peptide. J Lasers Med Sci 2024; 15:e21. [PMID: 39188931 PMCID: PMC11345802 DOI: 10.34172/jlms.2024.21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/16/2024] [Indexed: 08/28/2024]
Abstract
Introduction: Photobiomodulation (PBM) and Akkermansia muciniphila have been shown to be effective in improving inflammatory conditions with positive effects on increasing the population of anti-inflammatory M2 macrophages (MQs). In this study, gliadin-stimulated THP-1 derived MQs were treated with A. muciniphila and PBM to evaluate their effects on promoting the polarization of M2 MQs. Methods: The human monocyte cell line (THP-1) was differentiated to MQs. MQs were stimulated with 200 μg/mL gliadin for 24 hours and then treated with PBM 810 nm alone and in combination with A. muciniphila for the following 24 hours to evaluate their effects on MQs polarization. THP-1 derived MQs were also treated with PBM and A. muciniphila to evaluate their effects on non-stimulated MQs. CD11b, CD80, and CD206 levels were evaluated by using the flow cytometry technique. Moreover, the expression of some M1 and M2-related cytokines was determined. Results: PBM therapy of gliadin-stimulated MQs decreased IL-6 and increased TGF-β, IL-10 and TNF-α expression compared with gliadin exposed MQs. PBM along with A. muciniphila treatment induced IL-6, TNF-α, and IL-10 expression in MQs in comparison to the untreated group. It also elevated TGF-β, IL-10 and TNF-α levels in gliadin-triggered MQs in comparison to gliadin-stimulated MQ cells. Conclusion: The result of this study showed the potential of PBMT and A. muciniphila for modulating inflammatory responses and MQs polarization. This may open new perspectives to find possible therapeutic targets for celiac diseases.
Collapse
Affiliation(s)
- Somayeh Jahani-Sherafat
- Laser Application in Medical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Mollaghaei
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nastaran Asri
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Kaveh Baghaei
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Rostami-Nejad
- Celiac Disease and Gluten Related Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Villalobos V, Silva I, Morales D, Canelo J, Garrido M, Carreño LJ, Cavalla F, Dutzan N, Caceres M. Topological insight of immune-vascular distribution in peri-implantitis lesions. Oral Dis 2024. [PMID: 38566281 DOI: 10.1111/odi.14935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/31/2024] [Accepted: 03/10/2024] [Indexed: 04/04/2024]
Abstract
OBJECTIVE To characterize the distribution of macrophages, neutrophils, NK cells, and blood vessels in peri-implantitis compared to healthy aged gingiva samples. MATERIALS AND METHODS This observational study included eight gingival samples from peri-implantitis and eight from periodontally healthy individuals. By immunofluorescence were identified neutrophils, NK cells, macrophages, and their pro-inflammatory or pro-healing phenotypes, and blood vessels. Two ROIs were designated as zone 1, connective tissue closest to the epithelium and zone 2, connective tissue over 200 microns from the rete ridges. Immune cells and vascular structures were quantified and characterized according to their distribution in both zones. RESULTS Two peri-implantitis zones were characterized by unique macrophage phenotypes and blood vessel architecture. Blood vessels were larger in zone 2 in peri-implantitis. A greater number of NK cells and macrophages were found in peri-implantitis compared to healthy aged samples. A higher presence of pro-inflammatory macrophages was found in zone 1 compared to zone 2. A similar proportion of pro-inflammatory and pro-healing macrophages were found in zone 2. CONCLUSION A specific distribution for pro-inflammatory macrophages and vascular architecture is observed in peri-implantitis. TNF-α colocalizes with macrophages in the connective tissue near rete ridges. NK cells are more abundant in peri-implantitis than in healthy samples.
Collapse
Affiliation(s)
- Veronica Villalobos
- Program of Molecular and Cell Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Universidad de Chile, Santiago, Chile
| | - Ian Silva
- Program of Molecular and Cell Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Universidad de Chile, Santiago, Chile
| | - Diego Morales
- Program of Molecular and Cell Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Javiera Canelo
- Program of Molecular and Cell Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
| | - Mauricio Garrido
- Millennium Institute on Immunology and Immunotherapy (IMII), Universidad de Chile, Santiago, Chile
- Faculty of Dentistry, Department of Conservative Dentistry, Universidad de Chile, Santiago, Chile
| | - Leandro J Carreño
- Millennium Institute on Immunology and Immunotherapy (IMII), Universidad de Chile, Santiago, Chile
- Program of Immunology, Institute of Biomedical Sciences, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Franco Cavalla
- Faculty of Dentistry, Department of Conservative Dentistry, Universidad de Chile, Santiago, Chile
- Faculty of Dentistry, Andres Bello University, Santiago, Chile
| | - Nicolas Dutzan
- Faculty of Dentistry, Department of Conservative Dentistry, Universidad de Chile, Santiago, Chile
| | - Monica Caceres
- Program of Molecular and Cell Biology, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy (IMII), Universidad de Chile, Santiago, Chile
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
| |
Collapse
|
6
|
Khoswanto C, Dewi IK. The role of Wnt signaling on Tooth Extraction Wound Healing: Narrative review. Saudi Dent J 2024; 36:516-520. [PMID: 38690381 PMCID: PMC11056418 DOI: 10.1016/j.sdentj.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 05/02/2024] Open
Abstract
Compared to an incisional skin or mucosal wound, a tooth extraction wound results in far more soft tissue loss. A blood clot instantly fills the gap left by the extracted tooth. An embryonic type of bone forms during the healing of extraction wounds, and mature bone only later replaces it. Osteocytes in embryonic bone, also known as coarse fibrillar bone or immature bone, differ from those in adult bone in terms of number, size, and irregular arrangement. This immature bone is more radiolucent than mature bone due to the higher cell density and the smaller volume of calcified intercellular material. The Wnt gene family contains genes that encode secreted signaling proteins that have good promise for promoting bone regeneration. However, we still have a limited understanding the interplay of the molecular elements of the Wnt pathway in signal transduction, from ligand detection on the cell surface to transcription of target genes in the nucleus. We discuss the function of Wnt signaling molecules in this review, in tissue repair following tooth extraction and present recent results about these molecules. Conclusions: Wnt signaling activity helps to hasten bone regeneration while bone healing is slowed down by mutations in LRP5/6 or β-catenin.
Collapse
Affiliation(s)
- Christian Khoswanto
- Department of Oral Biology Faculty of Dentistry, Airlangga University Surabaya, Indonesia
| | | |
Collapse
|
7
|
Teer L, Yaddanapudi K, Chen J. Biophysical Control of the Glioblastoma Immunosuppressive Microenvironment: Opportunities for Immunotherapy. Bioengineering (Basel) 2024; 11:93. [PMID: 38247970 PMCID: PMC10813491 DOI: 10.3390/bioengineering11010093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/14/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024] Open
Abstract
GBM is the most aggressive and common form of primary brain cancer with a dismal prognosis. Current GBM treatments have not improved patient survival, due to the propensity for tumor cell adaptation and immune evasion, leading to a persistent progression of the disease. In recent years, the tumor microenvironment (TME) has been identified as a critical regulator of these pro-tumorigenic changes, providing a complex array of biomolecular and biophysical signals that facilitate evasion strategies by modulating tumor cells, stromal cells, and immune populations. Efforts to unravel these complex TME interactions are necessary to improve GBM therapy. Immunotherapy is a promising treatment strategy that utilizes a patient's own immune system for tumor eradication and has exhibited exciting results in many cancer types; however, the highly immunosuppressive interactions between the immune cell populations and the GBM TME continue to present challenges. In order to elucidate these interactions, novel bioengineering models are being employed to decipher the mechanisms of immunologically "cold" GBMs. Additionally, these data are being leveraged to develop cell engineering strategies to bolster immunotherapy efficacy. This review presents an in-depth analysis of the biophysical interactions of the GBM TME and immune cell populations as well as the systems used to elucidate the underlying immunosuppressive mechanisms for improving current therapies.
Collapse
Affiliation(s)
- Landon Teer
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA;
| | - Kavitha Yaddanapudi
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
- Immuno-Oncology Program, Brown Cancer Center, Department of Medicine, University of Louisville, Louisville, KY 40202, USA
- Division of Immunotherapy, Department of Surgery, University of Louisville, Louisville, KY 40202, USA
| | - Joseph Chen
- Department of Bioengineering, University of Louisville, Louisville, KY 40292, USA;
| |
Collapse
|
8
|
Chen Y, Wang L, Liu M, Zhao J, Xu X, Wei D, Chen J. Mechanism of exosomes from adipose-derived mesenchymal stem cells on sepsis-induced acute lung injury by promoting TGF-β secretion in macrophages. Surgery 2023; 174:1208-1219. [PMID: 37612209 DOI: 10.1016/j.surg.2023.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 05/05/2023] [Accepted: 06/18/2023] [Indexed: 08/25/2023]
Abstract
OBJECTIVE Acute lung injury (ALI) caused by sepsis is a life-threatening condition characterized by uncontrollable lung inflammation. The current study sought to investigate the mechanism of adipose-derived mesenchymal stem cell-derived exosomes (ADMSC-Exos) in attenuating sepsis-induced ALI through TGF-β secretion in macrophages. METHODS Adipose-derived mesenchymal stem cell-derived exosomes (ADMSC-Exos) were extracted from ADMSCs and identified. Septic ALI mouse models were established via cecal ligation and puncture (CLP), followed by administration of ADMSC-Exos or sh-TGF-β lentiviral vector. Mouse macrophages (cell line RAW 264.7) were treated with lipopolysaccharide (LPS), co-cultured with Exos and splenic T cells, and transfected with TGF-β siRNA. The lung injury of CLP mice was evaluated, and levels of inflammatory indicators and macrophage markers were measured. The localization of macrophage markers and TGF-β was determined, and the level of TGF-β in lung tissues was measured. The effect of TGF-β knockdown on sepsis-induced ALI in CLP mice was evaluated, and the percentages of CD4+CD25+Foxp3+ Tregs in mononuclear cells/macrophages and Foxp3 levels in lung tissues/co-cultured splenic T cells were examined. RESULTS ADMSC-Exos were found to alleviate sepsis-induced ALI, inhibit inflammatory responses, and induce macrophages to secrete TGF-β in CLP mice. TGF-β silencing reversed the alleviating effect of ADMSC-Exos on sepsis-induced ALI. ADMSC-Exos also increased the number of Tregs in the spleen of CLP mice and promoted M2 polarization and TGF-β secretion in LPS-induced macrophages. After knockdown of TGF-β in macrophages in the co-culture system, the number of Tregs decreased, suggesting that ADMSC-Exos increased the Treg number by promoting macrophages to secrete TGF-β. CONCLUSION Our findings suggest ADMSC-Exos can effectively alleviate sepsis-induced ALI in CLP mice by promoting TGF-β secretion in macrophages.
Collapse
Affiliation(s)
- Yin Chen
- Department of Thoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No.299 Qingyang Road, Wuxi, Jiangsu, 214023, China; Department of Thoracic Surgery, Shanghai General Hospital of Nanjing Medical University, No.100 Haining Road, Shanghai, 200080, China
| | - Lei Wang
- Department of Cardiothoracic Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, No.1665 Kongjiang Road, Shanghai, 200082, China
| | - Mingzhao Liu
- Department of Thoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No.299 Qingyang Road, Wuxi, Jiangsu, 214023, China
| | - Jin Zhao
- Department of Thoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No.299 Qingyang Road, Wuxi, Jiangsu, 214023, China
| | - Xiangnan Xu
- Department of Thoracic Surgery, Shanghai General Hospital of Nanjing Medical University, No.100 Haining Road, Shanghai, 200080, China
| | - Dong Wei
- Department of Thoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No.299 Qingyang Road, Wuxi, Jiangsu, 214023, China.
| | - Jingyu Chen
- Department of Thoracic Surgery, Wuxi People's Hospital Affiliated to Nanjing Medical University, No.299 Qingyang Road, Wuxi, Jiangsu, 214023, China.
| |
Collapse
|
9
|
Genkel V, Dolgushin I, Savochkina A, Nikushkina K, Baturina I, Minasova A, Sumerkina V, Pykhova L, Kupriyanov S, Kuznetsova A, Shaposhnik I. Innate and Adaptive Immunity-Related Markers as Predictors of the Short-Term Progression of Subclinical Atherosclerosis in Middle-Aged Patients. Int J Mol Sci 2023; 24:12205. [PMID: 37569579 PMCID: PMC10419170 DOI: 10.3390/ijms241512205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Assessment of inflammation is a promising approach to monitoring the progression of asymptomatic atherosclerosis. The aim of the present study was to investigate the predictive value of innate and adaptive immunity-related markers, in relation to the short-term progression of subclinical atherosclerosis. The study included 183 patients aged 40-64 years who underwent duplex scanning of the carotid and lower limb arteries at two visits with an interval of 12-24 months between examinations. Phenotyping of circulating lymphocytes and monocytes subpopulations were performed through flow cytometry. An increase in the number of circulating TLR4-positive intermediate monocytes (>447.0-467.0 cells/μL) was an independent predictor of the short-term progression of lower limb artery atherosclerosis (p < 0.0001) and polyvascular atherosclerosis (p = 0.003). The assessment of TLR4-positive monocytes significantly improved the prognostic model for the progression of lower limb arterial atherosclerosis (C-index 0.728 (0.642-0.815) versus 0.637 (0.539-0.735); p = 0.038). An increase in the number of circulating TLR4-positive intermediate monocytes was an independent predictor of the short-term progression of lower limb artery and polyvascular atherosclerosis. Their inclusion into models containing conventional risk factors significantly improved their prognostic effectiveness regarding lower limb artery atherosclerosis progression.
Collapse
Affiliation(s)
- Vadim Genkel
- Federal State Budgetary Educational Institution of Higher Education “South-Ural State Medical University” of the Ministry of Healthcare of the Russian Federation, 454092 Chelyabinsk, Russia; (I.D.); (A.S.); (K.N.); (I.B.); (A.M.); (V.S.); (L.P.); (S.K.); (A.K.); (I.S.)
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Fujii S, Takebe H, Mizoguchi T, Nakamura H, Shimo T, Hosoya A. Bone formation ability of Gli1 + cells in the periodontal ligament after tooth extraction. Bone 2023; 173:116786. [PMID: 37164217 DOI: 10.1016/j.bone.2023.116786] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/29/2023] [Accepted: 04/30/2023] [Indexed: 05/12/2023]
Abstract
During the process of socket healing after tooth extraction, osteoblasts appear in the tooth socket and form alveolar bone; however, the source of these osteoblasts is still uncertain. Recently, it has been demonstrated that cells expressing Gli1, a downstream factor of sonic hedgehog signaling, exhibit stem cell properties in the periodontal ligament (PDL). Therefore, in the present study, the differentiation ability of Gli1+-PDL cells after tooth extraction was analyzed using Gli1-CreERT2/ROSA26-loxP-stop-loxP-tdTomato (iGli1/Tomato) mice. After the final administration of tamoxifen to iGli1/Tomato mice, Gli1/Tomato+ cells were rarely detected in the PDL. One day after the tooth extraction, although inflammatory cells appeared in the tooth socket, Periostin+ PDL-like tissues having a few Gli1/Tomato+ cells remained near the alveolar bone. Three days after the extraction, the number of Gli1/Tomato+ cells increased as evidenced by numerous PCNA+ cells in the socket. Some of these Gli1/Tomato+ cells expressed BMP4 and Phosphorylated (P)-Smad1/5/8. After seven days, the Osteopontin+ bone matrix was formed in the tooth socket apart from the alveolar bone. Many Gli1/Tomato+ osteoblasts that were positive for Runx2+ were arranged on the surface of the newly formed bone matrix. In the absence of Gli1+-PDL cells in Gli1-CreERT2/Rosa26-loxP-stop-loxP-tdDTA (iGli1/DTA) mice, the amount of newly formed bone matrix was significantly reduced in the tooth socket. Therefore, these results collectively suggest that Gli1+-PDL cells differentiate into osteoblasts to form the bone matrix in the tooth socket; thus, this differentiation might be regulated, at least in part, by bone morphogenetic protein (BMP) signaling.
Collapse
Affiliation(s)
- Saki Fujii
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan; Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Hiroaki Takebe
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | | | - Hiroaki Nakamura
- Department of Oral Anatomy, Matsumoto Dental University, Nagano, Japan
| | - Tsuyoshi Shimo
- Division of Reconstructive Surgery for Oral and Maxillofacial Region, Department of Human Biology and Pathophysiology, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan
| | - Akihiro Hosoya
- Division of Histology, Department of Oral Growth and Development, School of Dentistry, Health Sciences University of Hokkaido, Ishikari-Tobetsu, Hokkaido, Japan.
| |
Collapse
|
11
|
Asparuhova MB, Riedwyl D, Aizawa R, Raabe C, Couso-Queiruga E, Chappuis V. Local Concentrations of TGF-β1 and IGF-1 Appear Determinant in Regulating Bone Regeneration in Human Postextraction Tooth Sockets. Int J Mol Sci 2023; 24:ijms24098239. [PMID: 37175951 PMCID: PMC10179638 DOI: 10.3390/ijms24098239] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Healing after tooth extraction involves a series of reparative processes affecting both alveolar bone and soft tissues. The aim of the present study was to investigate whether activation of molecular signals during the healing process confers a regenerative advantage to the extraction socket soft tissue (ESsT) at 8 weeks of healing. Compared to subepithelial connective tissue graft (CTG), qRT-PCR analyses revealed a dramatic enrichment of the ESsT in osteogenic differentiation markers. However, ESsT and CTG shared characteristics of nonspecialized soft connective tissue by expressing comparable levels of genes encoding abundant extracellular matrix (ECM) proteins. Genes encoding the transforming growth factor-β1 (TGF-β1) and its receptors were strongly enriched in the CTG, whereas the transcript for the insulin-like growth factor-1 (IGF-1) showed significantly high and comparable expression in both tissues. Mechanical stimulation, by the means of cyclic strain or matrix stiffness applied to primary ESsT cells (ESsT-C) and CTG fibroblasts (CTG-F) extracted from the tissue samples, revealed that stress-induced TGF-β1 not exceeding 2.3 ng/mL, as measured by ELISA, in combination with IGF-1 up to 2.5 ng/mL was able to induce the osteogenic potential of ESsT-Cs. However, stiff matrices (50 kPa), upregulating the TGF-β1 expression up to 6.6 ng/mL, caused downregulation of osteogenic gene expression in the ESsT-Cs. In CTG-Fs, endogenous or stress-induced TGF-β1 ≥ 4.6 ng/mL was likely responsible for the complete lack of osteogenesis. Treatment of ESsT-Cs with TGF-β1 and IGF-1 proved that, at specific concentrations, the two growth factors exhibited either an inductive-synergistic or a suppressive activity, thus determining the osteogenic and mineralization potential of ESsT-Cs. Taken together, our data strongly warrant the clinical exploration of ESsT as a graft in augmentative procedures during dental implant placement surgeries.
Collapse
Affiliation(s)
- Maria B Asparuhova
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Dominic Riedwyl
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Ryo Aizawa
- Laboratory of Oral Cell Biology, Dental Research Center, School of Dental Medicine, University of Bern, Freiburgstrasse 3, 3010 Bern, Switzerland
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
- Department of Periodontology, School of Dentistry, Showa University, 2-1-1 Kitasenzoku, Ohta-ku, Tokyo 145-8515, Japan
| | - Clemens Raabe
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Emilio Couso-Queiruga
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| | - Vivianne Chappuis
- Department of Oral Surgery and Stomatology, School of Dental Medicine, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| |
Collapse
|
12
|
Martins-Lima C, Chianese U, Benedetti R, Altucci L, Jerónimo C, Correia MP. Tumor microenvironment and epithelial-mesenchymal transition in bladder cancer: Cytokines in the game? Front Mol Biosci 2023; 9:1070383. [PMID: 36699696 PMCID: PMC9868260 DOI: 10.3389/fmolb.2022.1070383] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/22/2022] [Indexed: 01/11/2023] Open
Abstract
Bladder cancer (BlCa) is a highly immunogenic cancer. Bacillus Calmette-Guérin (BCG) is the standard treatment for non-muscle invasive bladder cancer (NMIBC) patients and, recently, second-line immunotherapies have arisen to treat metastatic BlCa patients. Understanding the interactions between tumor cells, immune cells and soluble factors in bladder tumor microenvironment (TME) is crucial. Cytokines and chemokines released in the TME have a dual role, since they can exhibit both a pro-inflammatory and anti-inflammatory potential, driving infiltration and inflammation, and also promoting evasion of immune system and pro-tumoral effects. In BlCa disease, 70-80% are non-muscle invasive bladder cancer, while 20-30% are muscle-invasive bladder cancer (MIBC) at the time of diagnosis. However, during the follow up, about half of treated NMIBC patients recur once or more, with 5-25% progressing to muscle-invasive bladder cancer, which represents a significant concern to the clinic. Epithelial-mesenchymal transition (EMT) is one biological process associated with tumor progression. Specific cytokines present in bladder TME have been related with signaling pathways activation and EMT-related molecules regulation. In this review, we summarized the immune landscape in BlCa TME, along with the most relevant cytokines and their putative role in driving EMT processes, tumor progression, invasion, migration and metastasis formation.
Collapse
Affiliation(s)
- Cláudia Martins-Lima
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) and Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal,Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy,BIOGEM, Molecular Biology and Genetics Research Institute, Avellino, Italy,IEOS, Institute of Endocrinology and Oncology, Naples, Italy
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) and Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal,*Correspondence: Carmen Jerónimo, , ; Margareta P. Correia,
| | - Margareta P. Correia
- Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto) and Porto Comprehensive Cancer Center (Porto.CCC) Raquel Seruca, Porto, Portugal,Department of Pathology and Molecular Immunology at School of Medicine and Biomedical Sciences, University of Porto (ICBAS-UP), Porto, Portugal,*Correspondence: Carmen Jerónimo, , ; Margareta P. Correia,
| |
Collapse
|
13
|
Bae JE, Hwang SM, Aryal YP, Kim TY, Sohn WJ, An SY, Kim JY, An CH, Lee Y, Kim YG, Park JW, Lee JM, Kim JY, Suh JY. Effects of erythropoietin on osteoblast in the tooth extraction socket in mice periodontitis model. Front Physiol 2022; 13:987625. [PMID: 36277197 PMCID: PMC9582603 DOI: 10.3389/fphys.2022.987625] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
Periodontitis is an excessive inflammatory event in tooth-supporting tissues and can cause tooth loss. We used erythropoietin (EPO), which has been reported to play an important role in bone healing and modulation of angiogenesis, as a therapeutic agent in vivo and in vitro experimental models to analyze its effect on periodontitis. First, EPO was applied to in vitro MC3T3-E1 cells and human periodontal ligament fibroblast (hPDLF) cells to examine its function in altered cellular events and gene expression patterns. In vitro cultivation of MC3T3-E1 and hPDLF cells with 10 IU/ml EPO at 24 and 48 h showed an obvious increase in cell proliferation. Interestingly, EPO treatment altered the expression of osteogenesis-related molecules, including alkaline phosphatase (ALP), bone morphogenetic protein-2 (BMP-2), and osteocalcin (OC) in MC3T3-E1 cells but not in hPDLF cells. In particular, MC3T3-E1 cells showed increased expression of ALP, BMP-2, and OC on day 5, while hPDLF cells showed increased expression of BMP-2, and OC on day 14. Based on the in vitro examination, we evaluated the effect of EPO on bone formation using an experimentally-induced animal periodontitis model. After the induction of periodontitis in the maxillary left second M, 10 IU/ml of EPO was locally applied to the extraction tooth sockets. Histomorphological examination using Masson’s trichrome (MTC) staining showed facilitated bone formation in the EPO-treated groups after 14 days. Similarly, stronger positive reactions against vascular endothelial growth factor (VEGF), cluster of differentiation 31 (CD31), runt-related transcription factor 2 (RUNX2), and osteocalcin (OC) were detected in the EPO-treated group compared to the control. Meanwhile, myeloperoxidase, an inflammatory marker, was decreased in the EPO-treated group on days 1 and 5. Overall, EPO facilitates bone healing and regeneration through altered signaling regulation and modulation of inflammation in the osteoblast cell lineage and to a lesser extent in hPDLF cells.
Collapse
Affiliation(s)
- Ju-Eun Bae
- Department of Periodontology, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
| | - Sung-Min Hwang
- Department of Periodontology, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
| | - Yam Prasad Aryal
- Department of Biochemistry, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
| | - Tae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
| | - Wern-Joo Sohn
- Pre-Major of Cosmetics and Pharmaceutics, Daegu Haany University, Gyeongsan, South Korea
| | - Seo-Young An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
| | - Ji-Youn Kim
- Department of Dental Hygiene, College of Health Science, Gachon University, Incheon, South Korea
| | - Chang-Hyeon An
- Department of Oral and Maxillofacial Radiology, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
| | - Youngkyun Lee
- Department of Biochemistry, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
| | - Yong-Gun Kim
- Department of Periodontology, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
| | - Jin-Woo Park
- Department of Periodontology, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
| | - Jae-Mok Lee
- Department of Periodontology, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
| | - Jae-Young Kim
- Department of Biochemistry, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
- *Correspondence: Jae-Young Kim, ; Jo-Young Suh,
| | - Jo-Young Suh
- Department of Periodontology, School of Dentistry, IHBR Kyungpook National University, Daegu, South Korea
- *Correspondence: Jae-Young Kim, ; Jo-Young Suh,
| |
Collapse
|
14
|
Lu YN, Wang L, Zhang YZ. The promising roles of macrophages in geriatric hip fracture. Front Cell Dev Biol 2022; 10:962990. [PMID: 36092716 PMCID: PMC9458961 DOI: 10.3389/fcell.2022.962990] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
As aging becomes a global burden, the incidence of hip fracture (HF), which is the most common fracture in the elderly population and can be fatal, is rapidly increasing, and its extremely high fatality rate places significant medical and financial burdens on patients. Fractures trigger a complex set of immune responses, and recent studies have shown that with aging, the immune system shows decreased activity or malfunctions in a process known as immune senescence, leading to disease and death. These phenomena are the reasons why elderly individuals typically exhibit chronically low levels of inflammation and increased rates of infection and chronic disease. Macrophages, which are key players in the inflammatory response, are critical in initiating the inflammatory response, clearing pathogens, controlling the innate and adaptive immune responses and repairing damaged tissues. Tissue-resident macrophages (TRMs) are widely present in tissues and perform immune sentinel and homeostatic functions. TRMs are combinations of macrophages with different functions and phenotypes that can be directly influenced by neighboring cells and the microenvironment. They form a critical component of the first line of defense in all tissues of the body. Immune system disorders caused by aging could affect the biology of macrophages and thus the cascaded immune response after fracture in various ways. In this review, we outline recent studies and discuss the potential link between monocytes and macrophages and their potential roles in HF in elderly individuals.
Collapse
Affiliation(s)
- Yi-ning Lu
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Ling Wang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopedic Oncology, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Ying-ze Zhang, ; Ling Wang,
| | - Ying-ze Zhang
- Department of Orthopedic Research Center, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- Department of Orthopedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, China
- *Correspondence: Ying-ze Zhang, ; Ling Wang,
| |
Collapse
|
15
|
Pathological differences in the bone healing processes between tooth extraction socket and femoral fracture. Bone Rep 2022; 16:101522. [PMID: 35372643 PMCID: PMC8965168 DOI: 10.1016/j.bonr.2022.101522] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
|
16
|
Aljuanid MA, Qaid HR, Lashari DM, Ridwan RD, Budi HS, Alkadasi BA, Ramadhani Y, Rahmasari RRP. Nano-emulsion of mangosteen rind extract in a mucoadhesive patch for periodontitis regenerative treatment: An in vivo study. J Taibah Univ Med Sci 2022; 17:910-920. [PMID: 36050950 PMCID: PMC9396070 DOI: 10.1016/j.jtumed.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/12/2022] [Accepted: 03/05/2022] [Indexed: 11/05/2022] Open
Abstract
Objective To investigate the therapeutic potential of nano-emulsion of mangosteen rind extract in a mucoadhesive gingival patch on periodontitis, and its effect on tumor necrosis factor alpha (TNF-α), receptor activator of nuclear factor kappa Β ligand (RANKL), and interleukin 10 (IL-10) expression. Methods Sixty Wistar rats were divided into four groups: positive control group (mucoadhesive patch with doxycycline), negative control group (mucoadhesive patch), treatment group I (mucoadhesive patch with mangosteen rind extract), and treatment group II (mucoadhesive patch with nano-emulsion of mangosteen rind extract). An experimental model of Porphyromonas gingivalis-induced periodontitis was established in rats by treatment with 0.03 mL bacteria locally (1 × 1010 colony-forming units) seven times at 2-day intervals in the gingival sulcus of mandibular anterior teeth. Treatment was 1 h/day for 3 days. On days 3, 5, and 7, five rats from each group were killed. TNF-α, IL-10, and RANKL expression was determined by dissecting the lower jaw for immunohistochemistry. Results The mucoadhesive patch with nano-emulsion mangosteen rind extract significantly decreased TNF-α and RANKL expression and increased IL-10 expression (p < 0.05) compared to the treatment I, positive and negative control groups. Conclusion A mucoadhesive gingival patch with nano-emulsion of mangosteen rind extract has the potential to treat periodontitis by decreasing TNF-α, RANKL, and increasing IL-10 expression.
Collapse
|
17
|
Ebrahimi L, Samadikuchaksaraei A, Joghataei MT, Safa M, Abtahi Froushani SM, Ghasemian M, Zolfaghari S, Mozafari M, Brouki Milan P. Transplantation of decellularised human amniotic membranes seeded with mesenchymal stem cell-educated macrophages into animal models. J Biomed Mater Res B Appl Biomater 2022; 110:1637-1650. [PMID: 35113492 DOI: 10.1002/jbm.b.35024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 11/08/2022]
Abstract
The reconstruction of chronic skin wounds remains a public health challenge in dermatology. Precisely controlling and monitoring the wound-healing process should result in enhanced outcomes for the patient. Cell-based therapies have shown great potential in medicine due to their immunomodulatory and healing properties. Herein, we produced activated macrophages by treating circulating monocytes with mesenchymal stem cell (MSC) supernatant. We also demonstrated the critical role of activated macrophages transplantation using amniotic membranes in accelerating wound healing in an animal wound model. The activated macrophages not only exhibited immunomodulatory cytokines like transforming growth factorβ (TGFβ) and interleukin 10 (and IL10) secretion but also showed attachment and proliferation ability on the amniotic membrane scaffold. Moreover, MSCs supernatant-treated cells also displayed significant ARG1, CD206, and IL 10 genes expression. Inspired by the in vitro results, we examined the in vivo therapeutic efficacy of the activated macrophage transplantation using an acellular amniotic membrane carrier in a full-thickness cutaneous wound model. The wound healing rate was significant in the group treated with macrophages generated via mesenchymal cell therapy seeded human amniotic membrane. There was less scarring in the wound sites after placing cell-scaffold constructs in the wound sites in the animal models. Overall, macrophages stimulated with mesenchymal cells' supernatant exhibited improved healing processes in incisional wounds by decreasing the inflammatory phase, increasing angiogenesis, and reducing scar tissue development.
Collapse
Affiliation(s)
- Loghman Ebrahimi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Samadikuchaksaraei
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Majid Safa
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Melina Ghasemian
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Zolfaghari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Manohar M, Jones EK, Rubin SJS, Subrahmanyam PB, Swaminathan G, Mikhail D, Bai L, Singh G, Wei Y, Sharma V, Siebert JC, Maecker HT, Husain SZ, Park WG, Pandol SJ, Habtezion A. Novel Circulating and Tissue Monocytes as Well as Macrophages in Pancreatitis and Recovery. Gastroenterology 2021; 161:2014-2029.e14. [PMID: 34450180 PMCID: PMC8796698 DOI: 10.1053/j.gastro.2021.08.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/28/2021] [Accepted: 08/17/2021] [Indexed: 02/06/2023]
Abstract
BACKGROUND AND AIMS Acute pancreatitis (AP) is an inflammatory disease with mild to severe course that is associated with local and systemic complications and significant mortality. Uncovering inflammatory pathways that lead to progression and recovery will inform ways to monitor and/or develop effective therapies. METHODS We performed single-cell mass Cytometry by Time Of Flight (CyTOF) analysis to identify pancreatic and systemic inflammatory signals during mild AP (referred to as AP), severe AP (SAP), and recovery using 2 independent experimental models and blood from patients with AP and recurrent AP. Flow cytometric validation of monocytes subsets identified using CyTOF analysis was performed independently. RESULTS Ly6C+ inflammatory monocytes were the most altered cells in the pancreas during experimental AP, recovery, and SAP. Deep profiling uncovered heterogeneity among pancreatic and blood monocytes and identified 7 novel subsets during AP and recovery, and 6 monocyte subsets during SAP. Notably, a dynamic shift in pancreatic CD206+ macrophage population was observed during AP and recovery. Deeper profiling of the CD206+ macrophage identified 7 novel subsets during AP, recovery, and SAP. Differential expression analysis of these novel monocyte and CD206+ macrophage subsets revealed significantly altered surface (CD44, CD54, CD115, CD140a, CD196, podoplanin) and functional markers (interferon-γ, interleukin 4, interleukin 22, latency associated peptide-transforming growth factor-β, tumor necrosis factor-α, T-bet, RoRγt) that were associated with recovery and SAP. Moreover, a targeted functional analysis further revealed distinct expression of pro- and anti-inflammatory cytokines by pancreatic CD206+ macrophage subsets as the disease either progressed or resolved. Similarly, we identified heterogeneity among circulating classical inflammatory monocytes (CD14+CD16-) and novel subsets in patients with AP and recurrent AP. CONCLUSIONS We identified several novel monocyte/macrophage subsets with unique phenotype and functional characteristics that are associated with AP, recovery, and SAP. Our findings highlight differential innate immune responses during AP progression and recovery that can be leveraged for future disease monitoring and targeting.
Collapse
Affiliation(s)
- Murli Manohar
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California; Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California.
| | - Elaina K Jones
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California; Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Samuel J S Rubin
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Priyanka B Subrahmanyam
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, California
| | - Gayathri Swaminathan
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - David Mikhail
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Lawrence Bai
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Gulshan Singh
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Yi Wei
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Vishal Sharma
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | | | - Holden T Maecker
- Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, California
| | - Sohail Z Husain
- Division of Pediatric Gastroenterology, Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Walter G Park
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Stephen J Pandol
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Aida Habtezion
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Stanford, California; Institute for Immunity, Transplantation, and Infection, Stanford University School of Medicine, Stanford, California.
| |
Collapse
|
19
|
Is the Macrophage Phenotype Determinant for Fibrosis Development? Biomedicines 2021; 9:biomedicines9121747. [PMID: 34944564 PMCID: PMC8698841 DOI: 10.3390/biomedicines9121747] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/16/2022] Open
Abstract
Fibrosis is a pathophysiological process of wound repair that leads to the deposit of connective tissue in the extracellular matrix. This complication is mainly associated with different pathologies affecting several organs such as lung, liver, heart, kidney, and intestine. In this fibrotic process, macrophages play an important role since they can modulate fibrosis due to their high plasticity, being able to adopt different phenotypes depending on the microenvironment in which they are found. In this review, we will try to discuss whether the macrophage phenotype exerts a pivotal role in the fibrosis development in the most important fibrotic scenarios.
Collapse
|