1
|
Yin Y, Shuai F, Liu X, Zhao Y, Han X, Zhao H. Biomaterials and therapeutic strategies designed for tooth extraction socket healing. Biomaterials 2025; 316:122975. [PMID: 39626339 DOI: 10.1016/j.biomaterials.2024.122975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/16/2024] [Accepted: 11/28/2024] [Indexed: 12/31/2024]
Abstract
Tooth extraction is the most commonly performed oral surgical procedure, with a wide range of clinical indications. The oral cavity is a complex microenvironment, influenced by oral movements, salivary flow, and bacterial biofilms. These factors can contribute to delayed socket healing and the onset of post-extraction complications, which can burden patients' esthetic and functional rehabilitation. Achieving effective extraction socket healing requires a multidisciplinary approach. Recent advancements in materials science and bioengineering have paved the way for developing novel strategies. This review outlines the fundamental healing processes and cellular-molecular interactions involved in the healing of extraction sockets. It then delves into the current landscape of biomaterials for socket healing, highlighting emerging strategies and potential targets that could transform the treatment paradigm. Building upon this foundation, this review also presents future directions and identifies challenges associated with the clinical application of biomaterials for extraction socket healing.
Collapse
Affiliation(s)
- Yijia Yin
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fangyuan Shuai
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xian Liu
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Yuxi Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xianglong Han
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| | - Hang Zhao
- State Key Laboratory of Oral Diseases, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Department of Orthodontics, Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, PR China.
| |
Collapse
|
2
|
Wang S, Xia D, Dou W, Chen A, Xu S. Bioactive Porous Composite Implant Guides Mesenchymal Stem Cell Differentiation and Migration to Accelerate Bone Reconstruction. Int J Nanomedicine 2024; 19:12111-12127. [PMID: 39583325 PMCID: PMC11586122 DOI: 10.2147/ijn.s479893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 10/30/2024] [Indexed: 11/26/2024] Open
Abstract
Background Delayed healing and non-healing of bone defects pose significant challenges in clinical practice, with metal materials increasingly recognized for their significance in addressing these issues. Among these materials, Strontium (Sr) and Zinc (Zn) have emerged as promising agents for promoting bone repair. Building upon this insight, this research evaluates the impact of a porous Sr@Zn@SiO2 nanocomposite implant on bone regeneration, aiming to advance the field of bone repair. Methods The preparation of the Sr@Zn@SiO2 composite implant involves various techniques such as roasting, centrifugation, and washing. The material's composition is examined, and its microstructure and element distribution are analyzed using TEM and elemental scanning technology. In vitro experiments entail the isolation and characterization of BMSCs followed by safety assessments of the implant material, evaluation of cell migration capabilities, and relevant proliferation markers. Mechanistically, this study delves into key targets associated with significant changes in the osteogenic process. In vivo experiments involve establishing a rat femur bone defect model, followed by assessment of the osteogenic potential of Sr@Zn@SiO2 using Micro-CT imaging and tissue section staining. Results Through in vivo and in vitro investigations, we validate the osteogenic efficacy of the Sr@Zn@SiO2 composite implant. In vitro analyses demonstrate that porous Sr@Zn@SiO2 nanocomposite materials upregulate BMP-2 expression, leading to the activation of Smad1/5/9 phosphorylation and subsequent activation of downstream osteogenic genes, culminating in BMSCs osteogenic differentiation and bone proliferation. And the migration of BMSCs is closely related to the high expression of CXCL12/CXCR4, which will also provide the conditions for osteogenesis. In vivo, the osteogenic ability of Sr@Zn@SiO2 was also confirmed in rats. Conclusion In our research, the porous Sr@Zn@SiO2 composite implant displays prominent osteogenic effect and promotes the migration and differentiation of BMSCs to promote bone defect healing. This bioactive implant has surgical application potential in the future.
Collapse
Affiliation(s)
- Sheng Wang
- Department of Traumatic Orthopedics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
| | - Demeng Xia
- Department of Traumatic Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
- Department of Clinical Medicine, Hainan Health Vocational College, Haikou, 570100, People’s Republic of China
| | - Wenxue Dou
- Department of Stomatology, Shanghai East Hospital, Tongji University, Shanghai, 200120, People’s Republic of China
| | - Aimin Chen
- Department of Traumatic Orthopedics, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, 200434, People’s Republic of China
| | - Shuogui Xu
- Department of Traumatic Orthopedics, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
3
|
Latimer JM, Maekawa S, Shiba T, Fretwurst T, Chen M, Larsson L, Sugai JV, Kostenuik P, Mitlak B, Lanske B, Giannobile WV. Healing sequelae following tooth extraction and dental implant placement in an aged, ovariectomy model. JBMR Plus 2024; 8:ziae113. [PMID: 39347482 PMCID: PMC11427826 DOI: 10.1093/jbmrpl/ziae113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/26/2024] [Accepted: 08/29/2024] [Indexed: 10/01/2024] Open
Abstract
At present, a lack of consensus exists regarding the clinical impact of osteoporosis on alveolar bone metabolism during implant osseointegration. While limited preclinical and clinical evidence demonstrates a negative influence of osteoporosis on dental extraction socket healing, no preclinical studies offer data on the results of implant placement in 6-mo-old, ovariectomized (OVX) Sprague-Dawley rats. This study aimed to investigate the outcomes of dental tooth extraction socket healing and implant placement in a rodent model of osteoporosis following daily vehicle (VEH) or abaloparatide (ABL) administration. Micro-CT and histologic analysis demonstrated signs of delayed wound healing, consistent with alveolar osteitis in extraction sockets following 42 d of healing in both the VEH and ABL groups. In a semiquantitative histological analysis, the OVX-ABL group demonstrated a tendency for improved socket regeneration with a 3-fold greater rate for moderate socket healing when compared to the OVX-VEH group (43% vs 14%), however, this finding was not statistically significant (p=.11). No significant differences were observed between vehicle and test groups in terms of implant outcomes (BMD and bone volume/total volume) at 14- and 21-d post-implant placement. Abaloparatide (ABL) significantly increased BMD of the femoral shaft and intact maxillary alveolar bone sites in OVX animals, demonstrating the therapeutic potential for oral hard tissue regeneration. The present model involving estrogen-deficiency-induced bone loss demonstrated an impaired healing response to dental extraction and implant installation.
Collapse
Affiliation(s)
- Jessica M Latimer
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, United States
| | - Shogo Maekawa
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Takahiko Shiba
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, United States
- Department of Periodontology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Tobias Fretwurst
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, United States
- Department of Oral and Craniomaxillofacial Surgery/Translational Implantology, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg 79106, Germany
| | - Michael Chen
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, United States
| | - Lena Larsson
- Department of Oral Biochemistry, Institute of Odontology, Sahlgrenska Academy, University of Gothenburg, Gothenburg 413 90, Sweden
| | - James V Sugai
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, United States
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, United States
| | - Paul Kostenuik
- Department of Periodontics & Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI 48109, United States
- Phylon Pharma Services, Thousand Oaks, CA 91320, United States
| | - Bruce Mitlak
- Radius Health Inc., Boston, MA 02210, United States
| | - Beate Lanske
- Radius Health Inc., Boston, MA 02210, United States
| | - William V Giannobile
- Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, MA 02115, United States
| |
Collapse
|
4
|
Liu F, Wang X, He Y, Han R, Wang T, Guo Y. Jaw osteoporosis: Challenges to oral health and emerging perspectives of treatment. Biomed Pharmacother 2024; 177:116995. [PMID: 38917761 DOI: 10.1016/j.biopha.2024.116995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/13/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024] Open
Abstract
Osteoporosis is a prevalent bone metabolic disease that poses a significant challenge to global human health. Jaw osteoporosis, characterized by microstructural damage of the jaw resulting from various factors, is one of the common manifestations of this condition. Recent studies have demonstrated that jaw osteoporosis has multifaceted effects on oral health and can negatively impact conditions such as periodontitis, oral implantation, orthodontic treatment, and wound healing. However, there are still some limitations in the conventional treatment of osteoporosis. For instance, while bisphosphonates can enhance bone quality, they may also lead to osteonecrosis of the jaw, which poses a potential safety hazard in oral diagnosis and treatment. In recent years, considerable attention has been focused on improving the pathological condition of jaw osteoporosis. Treatment strategies such as gut microbial regulation, extracellular vesicles, molecular targeted therapy, herbal medicine, mechanical stimulation are expected to enhance efficacy and minimize adverse reactions. Therefore, understanding these effects and exploring novel treatments for jaw osteoporosis may provide new insights for oral health maintenance and disease treatment. This article reviews the impact of jaw osteoporosis on oral health and describes the limitations associated with current methods. It also discusses emerging perspectives on treatment, offering a comprehensive overview of the challenges and future directions in managing jaw osteoporosis.
Collapse
Affiliation(s)
- Fushuang Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yikai He
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Tianyi Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, China.
| |
Collapse
|
5
|
Fok MR, Jin L. Learn, unlearn, and relearn post-extraction alveolar socket healing: Evolving knowledge and practices. J Dent 2024; 145:104986. [PMID: 38574844 DOI: 10.1016/j.jdent.2024.104986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/06/2024] Open
Abstract
OBJECTIVE This review was to offer a comprehensive analysis of currently available evidence on post-extraction alveolar socket healing, including i) the histological and molecular events during alveolar socket healing, ii) the dimensional ridge alterations after socket healing and controversies relating to sinus pneumatisation, iii) the patient-specific factors, procedural elements, and site-related variables influencing socket healing, iv) techniques and effectiveness of alveolar ridge preservation (ARP) procedure, and v) the philosophies and cost-effectiveness of ARP in clinical practice. SOURCES AND STUDY SELECTION To investigate the dimensional profiles of the alveolar ridge following unassisted healing, an overview of systematic reviews was conducted in February 2024 by two independent reviewers. Four electronic databases were searched in Pubmed, Embase, Web of science and Cochrane Library between 2004 and 2024 to identify all relevant systematic reviews on post-extraction healing. A further manual search of reviews was also conducted. The articles were further reviewed in full text for relevance. The AMSTAR-2 appraisal tool was adopted to assess methodological quality. Current research pertaining to other listed objectives was objectively analysed in narration. DATA 11 out of 459 retrieved studies were selected and ultimately covered in this review on the dimensional changes of alveolar ridge following natural healing: Seven systematic reviews and four systematic reviews with meta-analyses. The methodological quality of all included reviews was critically low. CONCLUSION This review thoroughly examines the healing profiles of post-extraction alveolar sockets and highlights the dynamic process with overlapping phases and the inter-individual variability in outcomes. ARP procedure is a potential strategy for facilitating prosthetic site development, while the current evidence is limited. Herein, an individualised and prosthetically driven approach is crucial. Further well sized and designed trials with novel biomaterials need to be undertaken, and the role of artificial intelligence in predicting healing and assisting clinical decision-making could be explored. CLINICAL SIGNIFICANCE By advancing our understanding of alveolar socket healing and its management strategies, clinicians can make more informed decisions regarding patient and site level assessment and selection, surgical techniques, and biomaterial choices, ultimately contributing to the enhanced healing process with reduced complications and improved quality of life for patients undergoing tooth extraction and dental implant treatments.
Collapse
Affiliation(s)
- Melissa Rachel Fok
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China.
| | - Lijian Jin
- Division of Periodontology and Implant Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, PR China
| |
Collapse
|
6
|
Borges JS, Costa VC, Irie MS, de Rezende Barbosa GL, Spin-Neto R, Soares PBF. Definition of the Region of Interest for the Assessment of Alveolar Bone Repair Using Micro-computed Tomography. J Digit Imaging 2023; 36:356-364. [PMID: 36070014 PMCID: PMC9984626 DOI: 10.1007/s10278-022-00693-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 08/10/2022] [Accepted: 08/10/2022] [Indexed: 10/14/2022] Open
Abstract
The objective of this study was to evaluate the influence of the extraction socket (distal or lingual root) and the type of region of interest (ROI) definition (manual or predefined) on the assessment of alveolar repair following tooth extraction using micro-computed tomography (micro-CT). The software package used for scanning, reconstruction, reorientation, and analysis of images (NRecon®, DataViewer®, CT-Analyzer®) was acquired through Bruker < https://www.bruker.com > . The sample comprised the micro-CT volumes of seven Wistar rat mandibles, in which the right first molar was extracted. The reconstructed images were analyzed using the extraction sockets, i.e., the distal and intermediate lingual root and the method of ROI definition: manual (MA), central round (CR), and peripheral round (PR). The bone volume fraction (BV/TV) values obtained were analyzed by two-way ANOVA with Tukey's post hoc test (α = 5%). The distal extraction socket resulted in significantly lower BV/TV values than the intermediate lingual socket for MA (P = 0.001), CR (P < 0.001), and PR (P < 0.001). Regarding the ROI, when evaluating the distal extraction socket, the BV/TV was significantly higher (P < 0.001) for MA than for CR and PR, with a lower BV/TV for CR. However, no significant difference was observed for MA (P = 0.855), CR (P = 0.769), or PR (P = 0.453) in the intermediate lingual extraction socket. The bone neoformation outcome (BV/TV) for alveolar bone repair after tooth extraction is significantly influenced by the ROI and the extraction socket. Using the predefined method with a standardized ROI in the central region of the distal extraction socket resulted in the assessment of bone volume, demonstrating the most critical region of the bone neoformation process.
Collapse
Affiliation(s)
- Juliana Simeão Borges
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Vitor Cardoso Costa
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil
| | - Milena Suemi Irie
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil
| | | | - Rubens Spin-Neto
- Department of Dentistry and Oral Health, Section for Oral Radiology, Health, Aarhus University, Aarhus, Denmark
| | - Priscilla Barbosa Ferreira Soares
- Department of Periodontology and Implantology, School of Dentistry, Federal University of Uberlândia, Avenida Pará s/n°, Campus Umuarama, Bloco 4L, Bairro Umuarama, Uberlândia, Minas Gerais, 38400-902, Brazil.
| |
Collapse
|
7
|
Annual review of selected scientific literature: A report of the Committee on Scientific Investigation of the American Academy of Restorative Dentistry. J Prosthet Dent 2022; 128:248-330. [PMID: 36096911 DOI: 10.1016/j.prosdent.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 11/23/2022]
Abstract
The Scientific Investigation Committee of the American Academy of Restorative Dentistry offers this review of the 2021 dental literature in restorative dentistry to inform busy dentists regarding noteworthy scientific and clinical progress over the past year. Each member of the committee brings discipline-specific expertise to coverage of this broad topical area. Specific subject areas addressed, in order of the appearance in this report, include COVID-19 and the dental profession (new); prosthodontics; periodontics, alveolar bone, and peri-implant tissues; implant dentistry; dental materials and therapeutics; occlusion and temporomandibular disorders; sleep-related breathing disorders; oral medicine and oral and maxillofacial surgery; and dental caries and cariology. The authors focused their efforts on reporting information likely to influence daily dental treatment decisions with an emphasis on future trends in dentistry. With the tremendous volume of dentistry and related literature being published daily, this review cannot possibly be comprehensive. Rather, its purpose is to update interested readers and provide important resource material for those interested in pursuing greater details on their own. It remains our intent to assist colleagues in negotiating the extensive volume of important information being published annually. It is our hope that readers find this work useful in successfully managing the patients and dental problems they encounter.
Collapse
|
8
|
Wheelis SE, Biguetti CC, Natarajan S, Chandrashekar BL, Arteaga A, Allami JE, Garlet GP, Rodrigues DC. Effects of Dicationic Imidazolium-Based Ionic Liquid Coatings on Oral Osseointegration of Titanium Implants: A Biocompatibility Study in Multiple Rat Demographics. Genes (Basel) 2022; 13:genes13040642. [PMID: 35456448 PMCID: PMC9026960 DOI: 10.3390/genes13040642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/20/2022] [Accepted: 03/30/2022] [Indexed: 01/27/2023] Open
Abstract
Dicationic imidazolium-based ionic liquids with amino acid anions, such as IonL-phenylalanine (IonL-Phe), have been proposed as a multifunctional coating for titanium (Ti) dental implants. However, there has been no evaluation of the biocompatibility of these Ti coatings in the oral environment. This study aims to evaluate the effects of IonL-Phe on early healing and osseointegration of Ti in multiple rat demographics. IonL-Phe-coated and uncoated Ti screws were implanted into four demographic groups of rats to represent biological variations that could affect healing: young males (YMs) and females (YFs), ovariectomized (OVXFs) females, and old males (OMs). Samples underwent histopathological and histomorphometric analysis to evaluate healing at 7 and 30 days around IonL-coated and uncoated Ti. The real-time quantitative polymerase chain reaction was also conducted at the 2- and 7-day YM groups to evaluate molecular dynamics of healing while the IonL-Phe was present on the surface. IonL-coated and uncoated implants demonstrated similar histological signs of healing, while coated samples’ differential gene expression of immunological and bone markers was compared with uncoated implants at 2 and 7 days in YMs. While YMs presented suitable osseointegration for both uncoated and IonL-Phe-coated groups, decreased success rate in other demographics resulted from lack of supporting bone in YFs and poor bone quality in OVXFs and OMs. Overall, it was found that IonL-coated samples had increased bone-to-implant contact across all demographic groups. IonL-Phe coating led to successful osseointegration across all animal demographics and presented the potential to prevent failures in scenarios known to be challenged by bacteria.
Collapse
Affiliation(s)
- Sutton E. Wheelis
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (S.E.W.); (C.C.B.); (B.L.C.); (A.A.); (J.E.A.)
| | - Claudia C. Biguetti
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (S.E.W.); (C.C.B.); (B.L.C.); (A.A.); (J.E.A.)
| | - Shruti Natarajan
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA;
- Texas A&M College of Dentistry, Dallas, TX 75246, USA
| | - Bhuvana Lakkasetter Chandrashekar
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (S.E.W.); (C.C.B.); (B.L.C.); (A.A.); (J.E.A.)
| | - Alexandra Arteaga
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (S.E.W.); (C.C.B.); (B.L.C.); (A.A.); (J.E.A.)
| | - Jihad El Allami
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (S.E.W.); (C.C.B.); (B.L.C.); (A.A.); (J.E.A.)
| | - Gustavo P. Garlet
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, São Paulo 01000, Brazil;
| | - Danieli C. Rodrigues
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA; (S.E.W.); (C.C.B.); (B.L.C.); (A.A.); (J.E.A.)
- Correspondence:
| |
Collapse
|