1
|
Dogan Buzoglu H, Ozcan M, Bozdemir O, Aydin Akkurt KS, Zeybek ND, Bayazit Y. Evaluation of oxidative stress cycle in healthy and inflamed dental pulp tissue: a laboratory investigation. Clin Oral Investig 2023; 27:5913-5923. [PMID: 37642737 DOI: 10.1007/s00784-023-05203-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/09/2023] [Indexed: 08/31/2023]
Abstract
OBJECTIVES The purpose of this study was to investigate the oxidative stress cycle consisting of reactive oxygen molecules (ROS), glutathione (GSH) and glutathione S-transferase (GST) in caries-related pulp inflammation. METHODOLOGY Fifty-four pulp tissue samples were collected from healthy donors with the diagnosis of reversible pulpitis, symptomatic irreversible pulpitis, and healthy pulp. Twelve pulp samples from each group were homogenized and total protein, ROS, GSH, and GST were measured by spectrophotometer. The remaining 6 samples from each group were prepared for paraffin block and used for the histopathologic and immunohistochemical evaluation of oxidative stress parameters and TUNEL labeling. Data were analyzed statistically. RESULTS The results revealed that total protein levels significantly decreased; however, ROS levels increased in both reversible and irreversible pulpitis compared to the healthy pulp (p < 0.01). Also, as inflammation increases, GST enzyme levels decrease while GSH levels increase significantly (p < 0.05). It was found that the number of TUNEL (+) cells was increased in irreversible pulpitis samples compared to healthy and reversible pulpitis groups (p < 0.05). GSTP1 and GSH immunoreactivity were also observed in irreversible pulpitis samples. CONCLUSIONS It has been revealed that caries-related inflammation alters the oxidative stress cycle in dental pulp tissue. The increase in GSH levels in the inflamed dental pulp due to the increase in ROS levels may improve the defensive ability of the dental pulp. CLINICAL RELEVANCE There is a relationship between oxidative stress and inflammation. Control of excessive oxidative stress in pulpitis can stimulate reparative and regenerative processes. The present findings may provide an overview of the management of oxidative stress in cases with pulpitis during regenerative treatments.
Collapse
Affiliation(s)
- H Dogan Buzoglu
- Department of Endodontics, Faculty of Dentistry, Hacettepe University, Sihhiye, 06230, Ankara, Turkey.
| | - M Ozcan
- Department of Medical Biochemistry, Faculty of Medicine, Zonguldak Bulent Ecevit University, Zonguldak, Turkey
| | - O Bozdemir
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
| | - K S Aydin Akkurt
- Department of Histology & Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - N D Zeybek
- Department of Histology & Embryology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Y Bayazit
- Department of Medical Biochemistry, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
2
|
Barać M, Petrović M, Petrović N, Nikolić-Jakoba N, Aleksić Z, Todorović L, Petrović-Stanojević N, Anđelić-Jelić M, Davidović A, Milašin J, Roganović J. Melatonin Action in Type 2 Diabetic Parotid Gland and Dental Pulp: In Vitro and Bioinformatic Findings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:6727. [PMID: 37754589 PMCID: PMC10530673 DOI: 10.3390/ijerph20186727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/30/2023] [Accepted: 09/04/2023] [Indexed: 09/28/2023]
Abstract
Type 2 diabetes mellitus (T2DM) is associated with functional deterioration of the salivary gland and dental pulp, related to oxidative stress. The aim was to integrate experimental and bioinformatic findings to analyze the cellular mechanism of melatonin (MEL) action in the human parotid gland and dental pulp in diabetes. Human parotid gland tissue was obtained from 16 non-diabetic and 16 diabetic participants, as well as human dental pulp from 15 non-diabetic and 15 diabetic participants. In human non-diabetic and diabetic parotid gland cells (hPGCs) as well as in dental pulp cells (hDPCs), cultured in hyper- and normoglycemic conditions, glial cell line-derived neurotrophic factor (GDNF), MEL, inducible nitric oxide synthase (iNOS) protein expression, and superoxide dismutase (SOD) activity were measured by enzyme-linked immunosorbent assay (ELISA) and spectrophotometrically. Bioinformatic analysis was performed using ShinyGO (v.0.75) application. Diabetic participants had increased GDNF and decreased MEL in parotid (p < 0.01) and dental pulp (p < 0.05) tissues, associated with increased iNOS and SOD activity. Normoglycemic hDPCs and non-diabetic hPGCs treated with 0.1 mM MEL had increased GDNF (p < 0.05), while hyperglycemic hDPCs treated with 1 mM MEL showed a decrease in up-regulated GDNF (p < 0.05). Enrichment analyses showed interference with stress and ATF/CREB signaling. MEL induced the stress-protective mechanism in hyperglycemic hDPCs and diabetic hPGCs, suggesting MEL could be beneficial for diabetes-associated disturbances in oral tissues.
Collapse
Affiliation(s)
- Milena Barać
- Department of Pharmacology in Dentistry, Faculty of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Milan Petrović
- Clinic for Maxillofacial Surgery, Faculty of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Nina Petrović
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (N.P.); (L.T.)
| | - Nataša Nikolić-Jakoba
- Department of Periodontology, Faculty of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.N.-J.); (Z.A.)
| | - Zoran Aleksić
- Department of Periodontology, Faculty of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia; (N.N.-J.); (Z.A.)
| | - Lidija Todorović
- Vinča Institute of Nuclear Sciences, National Institute of the Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia; (N.P.); (L.T.)
| | - Nataša Petrović-Stanojević
- Zvezdara University Medical Center, University of Belgrade, 11000 Belgrade, Serbia; (N.P.-S.); (M.A.-J.); (A.D.)
| | - Marina Anđelić-Jelić
- Zvezdara University Medical Center, University of Belgrade, 11000 Belgrade, Serbia; (N.P.-S.); (M.A.-J.); (A.D.)
| | - Aleksandar Davidović
- Zvezdara University Medical Center, University of Belgrade, 11000 Belgrade, Serbia; (N.P.-S.); (M.A.-J.); (A.D.)
| | - Jelena Milašin
- Department of Human Genetics, Faculty of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| | - Jelena Roganović
- Department of Pharmacology in Dentistry, Faculty of Dental Medicine, University of Belgrade, 11000 Belgrade, Serbia;
| |
Collapse
|
3
|
Ghorani V, Saadat S, Khazdair MR, Gholamnezhad Z, El-Seedi H, Boskabady MH. Phytochemical Characteristics and Anti-Inflammatory, Immunoregulatory, and Antioxidant Effects of Portulaca oleracea L.: A Comprehensive Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:2075444. [PMID: 37693918 PMCID: PMC10484659 DOI: 10.1155/2023/2075444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/30/2023] [Accepted: 08/14/2023] [Indexed: 09/12/2023]
Abstract
Portulaca oleracea L. (P. oleracea) or purslane is a plant from the Portulacaceae family, which is used as food and traditional medicine for various diseases. This review article provides comprehensive information on the antioxidant, immunomodulatory, and anti-inflammatory properties of P. oleracea and its constituents. The literature survey of the different databases until the end of June 2023 was explored based on the keywords including the "P. oleracea, purslane, anti-inflammatory, immunomodulatory, and antioxidant properties." The plant contains flavonoids, alkaloids, terpenoids, fatty acids, vitamins, minerals, and some other compounds. The results indicated that P. oleracea and its constituents showed anti-inflammatory and immunomodulatory properties through reduction of inflammatory mediators including interferon gama (IFN-γ), interleukin (IL)-10, IL-4, tumor necrosis factor-alpha (TNF-α), and nitric oxide. Improvement in cytokines' serum levels (IFN-γ, IL-10, and IL-4) and increased IgG and IgM serum levels, as well as reduction of IgE, phospholipase A2, and total protein were demonstrated for P. oleracea. The plant and its constituents also improved oxidative stress by reduction of oxidant and increase of antioxidant markers. P. oleracea could be considered as an effective remedy for various inflammatory and immune diseases.
Collapse
Affiliation(s)
- Vahideh Ghorani
- Clinical Research Development Unit, Imam Reza Hospital, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeideh Saadat
- Department of Physiology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mohammad Reza Khazdair
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Zahra Gholamnezhad
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hesham El-Seedi
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 210024, China
- Department of Chemistry, Faculty of Science, Menoufia University, Shebin El-Kom 31100107, Egypt
| | - Mohammad Hossein Boskabady
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
4
|
Uzunhisarcikli M, Apaydin FG, Bas H, Kalender Y. The ameliorative effects of quercetin and curcumin against subacute nephrotoxicity of fipronil induced in Wistar rats. Toxicol Res (Camb) 2023; 12:493-502. [PMID: 37397921 PMCID: PMC10311137 DOI: 10.1093/toxres/tfad034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/10/2023] [Accepted: 05/04/2023] [Indexed: 07/04/2023] Open
Abstract
Fipronil is a phenylpyrazole insecticide that is widely used in agricultural, veterinary, and public health fields for controlling a wide variety of insect species and it is an environmentally potent toxic substance. Curcumin and quercetin, which are well-known natural antioxidants, are widely used to prevent the harmful effects of free radicals on biological systems. The present study aimed to determine the potential ameliorative effects of quercetin and/or curcumin on fipronil-induced nephrotoxicity in rats. Curcumin (100 mg/kg of body weight), quercetin (50 mg/kg of body weight), and fipronil (3.88 mg/kg of body weight) were administered to male rats by intragastric gavage for 28 consecutive days. In the present study, body weight, kidney weight, the renal function markers (blood urea nitrogen, creatinine, and uric acid levels) in the blood, antioxidant enzyme activities, and malondialdehyde level as markers of oxidative stress, and histological changes of the renal tissue were evaluated. The levels of serum blood urea nitrogen, creatinine, and uric acid were significantly increased in fipronil-treated animals. Additionally, while superoxide dismutase, catalase, glutathione-S-transferase, and glutathione peroxidase activities were decreased in the kidney tissue of rats treated with fipronil, malondialdehyde level was significantly increased. Histopathological analyses showed that the glomerular and tubular injury occurred in the renal tissue of fipronil-treated animals. Also, the supplementation of quercetin and/or curcumin with fipronil significantly improved fipronil-induced alterations in renal function markers, antioxidant enzyme activities, malondialdehyde levels, and histological features of renal tissue.
Collapse
Affiliation(s)
- Meltem Uzunhisarcikli
- Corresponding author: Vocational High School of Health Services, Gazi University, Gölbaşı, Ankara 06830, Türkiye.
| | - Fatma Gokce Apaydin
- Faculty of Science, Department of Biology, Gazi University, Ankara 06500, Türkiye
| | - Hatice Bas
- Faculty of Arts and Science, Department of Biology, Bozok University, Yozgat 66100, Türkiye
| | - Yusuf Kalender
- Faculty of Science, Department of Biology, Gazi University, Ankara 06500, Türkiye
| |
Collapse
|
5
|
Yuzbasioglu D, Dilek UK, Erikel E, Unal F. Antigenotoxic effect of hyperoside against Mitomycin C and hydrogen peroxide-induced genotoxic damage on human lymphocytes. Toxicol In Vitro 2023; 90:105604. [PMID: 37137419 DOI: 10.1016/j.tiv.2023.105604] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/13/2023] [Accepted: 04/26/2023] [Indexed: 05/05/2023]
Abstract
Hyperoside is a flavonol glycoside isolated from various plant genera such as Hypericum and Crataegus. It has an important place in the human diet and is used medically to relieve pain and ameliorate cardiovascular functions. However, a comprehensive profile of the genotoxic and antigenotoxic effects of hyperoside is not known. The current study aimed to investigate the genotoxic and antigenotoxic effects of hyperoside against genetic damages induced by two genotoxins (MMC and H2O2) in human lymphocytes using chromosomal aberrations (CAs), sister chromatid exchanges (SCEs), and micronucleus (MN) assays in human peripheral blood lymphocytes in vitro. Blood lymphocytes were incubated with 7.8-62.5 μg/mL concentrations of hyperoside alone and simultaneously with 0.20 μg/mL Mitomycin C (MMC) or 100 μM Hydrogen peroxide (H2O2). Hyperoside did not exhibit genotoxic potential in the CA, SCE, and MN assays. Moreover, it did not cause a decrease in mitotic index (MI) which is an indicator of cytotoxicity. On the other hand, hyperoside significantly decreased CA, SCE, and MN (except for MMC treatment) frequencies induced by MMC and H2O2. Hyperoside, increased mitotic index against both mutagenic agents at 24-h treatment when compared to positive control. Our results demonstrate that hyperoside exhibited antigenotoxic effects rather than genotoxic in vitro human lymphocytes. Therefore, hyperoside may be a potential preventive agent in inhibiting chromosomal and oxidative damage induced by genotoxic chemicals.
Collapse
Affiliation(s)
- Deniz Yuzbasioglu
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, Ankara, Turkey.
| | - Ummugulsum Kubra Dilek
- Graduate School of Natural and Applied Sciences, Department of Biology, Gazi University, Ankara, Turkey
| | - Esra Erikel
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, Ankara, Turkey
| | - Fatma Unal
- Genetic Toxicology Laboratory, Department of Biology, Science Faculty, Gazi University, Ankara, Turkey.
| |
Collapse
|
6
|
Nijakowski K, Ortarzewska M, Jankowski J, Lehmann A, Surdacka A. The Role of Cellular Metabolism in Maintaining the Function of the Dentine-Pulp Complex: A Narrative Review. Metabolites 2023; 13:metabo13040520. [PMID: 37110177 PMCID: PMC10143950 DOI: 10.3390/metabo13040520] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The cellular metabolic processes ensure the physiological integrity of the dentine-pulp complex. Odontoblasts and odontoblast-like cells are responsible for the defence mechanisms in the form of tertiary dentine formation. In turn, the main defence reaction of the pulp is the development of inflammation, during which the metabolic and signalling pathways of the cells are significantly altered. The selected dental procedures, such as orthodontic treatment, resin infiltration, resin restorations or dental bleaching, can impact the cellular metabolism in the dental pulp. Among systemic metabolic diseases, diabetes mellitus causes the most consequences for the cellular metabolism of the dentine-pulp complex. Similarly, ageing processes present a proven effect on the metabolic functioning of the odontoblasts and the pulp cells. In the literature, several potential metabolic mediators demonstrating anti-inflammatory properties on inflamed dental pulp are mentioned. Moreover, the pulp stem cells exhibit the regenerative potential essential for maintaining the function of the dentine-pulp complex.
Collapse
Affiliation(s)
- Kacper Nijakowski
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Martyna Ortarzewska
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Jakub Jankowski
- Student's Scientific Group in the Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Anna Lehmann
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| | - Anna Surdacka
- Department of Conservative Dentistry and Endodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland
| |
Collapse
|
7
|
Li B, Pan LL, Pan X, Dong X, Ren Z, Zhang H, Chen W, de Vos P, Sun J. Opportunities and challenges of polyphenols and polysaccharides for type 1 diabetes intervention. Crit Rev Food Sci Nutr 2022; 64:2811-2823. [PMID: 36168918 DOI: 10.1080/10408398.2022.2126962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disorder characterized by the destruction of insulin-producing pancreatic β cell. It contributes to high mortality, frequent diabetic complications, poor quality of life in patients and also puts a significant economic burden on health care systems. Therefore, the development of new therapeutic strategies is urgently needed. Recently, certain dietary compounds with potential applications in food industry, particularly polyphenols and polysaccharides, have gained increasing attention with their prominent anti-diabetic effects on T1D by modulating β cell function, the gut microbiota and/or the immune system. In this review, we critically discuss the recent findings of several dietary polyphenols and polysaccharides with the potential to protect against T1D and the underlying anti-diabetic mechanisms. More importantly, we highlight the current trends, major issues, and future directions of industrial production of polyphenols- and polysaccharides-based functional foods for preventing or delaying T1D.
Collapse
Affiliation(s)
- Binbin Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Li-Long Pan
- School of Medicine, Jiangnan University, Wuxi, China
| | - Xiaohua Pan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | | | - Zhengnan Ren
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Paul de Vos
- Immunoendocrinology, Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jia Sun
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
8
|
Fabrication and In Vitro/Vivo Evaluation of Drug Nanocrystals Self-Stabilized Pickering Emulsion for Oral Delivery of Quercetin. Pharmaceutics 2022; 14:pharmaceutics14050897. [PMID: 35631483 PMCID: PMC9145886 DOI: 10.3390/pharmaceutics14050897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/24/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
The aim of this study was to develop a new drug nanocrystals self-stabilized Pickering emulsion (NSSPE) for improving oral bioavailability of quercetin (QT). Quercetin nanocrystal (QT–NC) was fabricated by high pressure homogenization method, and QT–NSSPE was then prepared by ultrasound method with QT–NC as solid particle stabilizer and optimized by Box-Behnken design. The optimized QT–NSSPE was characterized by fluorescence microscope (FM), scanning electron micrograph (SEM), X-ray diffraction (XRD), and differential scanning calorimetry (DSC). The stability, in vitro release, and in vivo oral bioavailability of QT–NSSPE were also investigated. Results showed that the droplets of QT–NSSPE with the size of 10.29 ± 0.44 μm exhibited a core-shell structure consisting of a core of oil and a shell of QT–NC. QT–NSSPE has shown a great stability in droplets shape, size, creaming index, zeta potential, and QT content during 30 days storage at 4, 25, and 40 °C. In vitro release studies showed that QT–NSSPE performed a better dissolution behavior (65.88% within 24 h) as compared to QT–NC (50.71%) and QT coarse powder (20.15%). After oral administration, the AUC0–t of QT–NSSPE was increased by 2.76-times and 1.38 times compared with QT coarse powder and QT–NC. It could be concluded that NSSPE is a promising oral delivery system for improving the oral bioavailability of QT.
Collapse
|
9
|
Alleviation of Oxidative Stress in Dental Pulp Cells Following 4-Hexylresorcinol Administration in a Rat Model. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11083637] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Damaged dental pulp undergoes oxidative stress and 4-hexylresorcinol (4HR) is a well-known antioxidant. In this study, we aimed to evaluate the therapeutic effects of a 4HR ointment on damaged dental pulp. Pulp cells from rat mandibular incisor were cultured and treated with 4HR or resveratrol (1–100 μM). These treatments (10–100 μM) exerted a protective effect during subsequent hydrogen peroxide treatments. The total antioxidant capacity and glutathione peroxidase activity were significantly increased following 4HR or resveratrol treatment (p < 0.05), while the expression levels of TNF-α and IL1β were decreased following the exposure to 4HR pre-treatment in an in vitro model. Additionally, the application of 4HR ointment in an exposed dental pulp model significantly reduced the expression of TNF-α and IL1β (p < 0.05). Conclusively, 4HR exerted protective effects against oxidative stress in dental pulp tissues through downregulating TNF-α and IL1β.
Collapse
|