1
|
De Falco E, Bordin A, Menna C, Dhori X, Picchio V, Cozzolino C, De Marinis E, Floris E, Maria Giorgiano N, Rosa P, Angelo Rendina E, Ibrahim M, Calogero A. Remote Adipose Tissue-Derived Stromal Cells of Patients with Lung Adenocarcinoma Generate a Similar Malignant Microenvironment of the Lung Stromal Counterpart. JOURNAL OF ONCOLOGY 2023; 2023:1011063. [PMID: 36733673 PMCID: PMC9889152 DOI: 10.1155/2023/1011063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 11/25/2022] [Accepted: 12/25/2022] [Indexed: 01/26/2023]
Abstract
Cancer alters both local and distant tissue by influencing the microenvironment. In this regard, the interplay with the stromal fraction is considered critical as this latter can either foster or hamper the progression of the disease. Accordingly, the modality by which tumors may alter distant niches of stromal cells is still unclear, especially at early stages. In this short report, we attempt to better understand the biology of this cross-talk. In our "autologous stromal experimental setting," we found that remote adipose tissue-derived mesenchymal stem cells (mediastinal AMSC) obtained from patients with lung adenocarcinoma sustain proliferation and clonogenic ability of A549 and human primary lung adenocarcinoma cells similarly to the autologous stromal lung counterpart (LMSC). This effect is not observed in lung benign diseases such as the hamartochondroma. This finding was validated by conditioning benign AMSC with supernatants from LAC for up to 21 days. The new reconditioned media of the stromal fraction so obtained, was able to increase cell proliferation of A549 cells at 14 and 21 days similar to that derived from AMSC of patients with lung adenocarcinoma. The secretome generated by remote AMSC revealed overlapping to the corresponding malignant microenvironment of the autologous local LMSC. Among the plethora of 80 soluble factors analyzed by arrays, a small pool of 5 upregulated molecules including IL1-β, IL-3, MCP-1, TNF-α, and EGF, was commonly shared by both malignant-like autologous A- and L-MSC derived microenvironments vs those benign. The bioinformatics analysis revealed that these proteins were strictly and functionally interconnected to lung fibrosis and proinflammation and that miR-126, 101, 486, and let-7-g were their main targets. Accordingly, we found that in lung cancer tissues and blood samples from the same set of patients here employed, miR-126 and miR-486 displayed the highest expression levels in tissue and blood, respectively. When the miR-126-3p was silenced in A549 treated with AMSC-derived conditioned media from patients with lung adenocarcinoma, cell proliferation decreased compared to control media.
Collapse
Affiliation(s)
- Elena De Falco
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, C.so della Repubblica 79 04100, Latina, Italy
- Mediterranea Cardiocentro, Napoli, Italy
| | - Antonella Bordin
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, C.so della Repubblica 79 04100, Latina, Italy
| | - Cecilia Menna
- Department of Thoracic Surgery, University “Sapienza”, S. Andrea Hospital, via di Grottarossa 1035, 00189 Rome, Italy
| | - Xhulio Dhori
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, C.so della Repubblica 79 04100, Latina, Italy
| | - Vittorio Picchio
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, C.so della Repubblica 79 04100, Latina, Italy
| | - Claudia Cozzolino
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, C.so della Repubblica 79 04100, Latina, Italy
| | - Elisabetta De Marinis
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, C.so della Repubblica 79 04100, Latina, Italy
| | - Erica Floris
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, C.so della Repubblica 79 04100, Latina, Italy
| | - Noemi Maria Giorgiano
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, C.so della Repubblica 79 04100, Latina, Italy
| | - Paolo Rosa
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, C.so della Repubblica 79 04100, Latina, Italy
| | - Erino Angelo Rendina
- Department of Thoracic Surgery, University “Sapienza”, S. Andrea Hospital, via di Grottarossa 1035, 00189 Rome, Italy
| | - Mohsen Ibrahim
- Department of Thoracic Surgery, University “Sapienza”, S. Andrea Hospital, via di Grottarossa 1035, 00189 Rome, Italy
| | - Antonella Calogero
- Department of Medical-Surgical Science and Biotechnologies, Faculty of Pharmacy and Medicine, University of Rome “Sapienza”, C.so della Repubblica 79 04100, Latina, Italy
| |
Collapse
|
2
|
Agnoletto C, Caruso C, Garofalo C. Heterogeneous Circulating Tumor Cells in Sarcoma: Implication for Clinical Practice. Cancers (Basel) 2021; 13:cancers13092189. [PMID: 34063272 PMCID: PMC8124844 DOI: 10.3390/cancers13092189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/29/2021] [Accepted: 04/30/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The present review is aimed to discuss the relevance of assaying for the presence and isolation of circulating tumor cells (CTCs) in patients with sarcoma. Just a few studies have been performed to detect and enumerate viable CTCs in sarcoma and a majority of them still represent proof-of-concept studies, while more frequently tumor cells have been detected in the circulation by using the PCR-based method. Nevertheless, recent advances in technologies allowed detection of epithelial–mesenchymal transitioned CTCs from patients with mesenchymal malignancies, despite results being mostly preliminary. The possibility to identify CTCs holds a great promise for both applications of liquid biopsy in sarcoma for precision medicine, and for research purposes to pinpoint the mechanism of the metastatic process through the characterization of tumor mesenchymal cells. Coherently, clinical trials in sarcoma have been designed accordingly to detect CTCs, for diagnosis, identification of novel therapeutic targets and resistance mechanisms of systemic therapies, and patient stratification. Abstract Bone and soft tissue sarcomas (STSs) represent a group of heterogeneous rare malignant tumors of mesenchymal origin, with a poor prognosis. Due to their low incidence, only a few studies have been reported addressing circulating tumor cells (CTCs) in sarcoma, despite the well-documented relevance for applications of liquid biopsy in precision medicine. In the present review, the most recent data relative to the detection and isolation of viable and intact CTCs in these tumors will be reviewed, and the heterogeneity in CTCs will be discussed. The relevance of epithelial–mesenchymal plasticity and stemness in defining the phenotypic and functional properties of these rare cells in sarcoma will be highlighted. Of note, the existence of dynamic epithelial–mesenchymal transition (EMT)-related processes in sarcoma tumors has only recently been related to their clinical aggressiveness. Also, the presence of epithelial cell adhesion molecule (EpCAM)-positive CTC in sarcoma has been weakly correlated with poor outcome and disease progression, thus proving the existence of both epithelial and mesenchymal CTC in sarcoma. The advancement in technologies for capturing and enumerating all diverse CTCs phenotype originating from these mesenchymal tumors are presented, and results provide a promising basis for clinical application of CTC detection in sarcoma.
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW One aim in bone tissue engineering is to develop human cell-based, 3D in vitro bone models to study bone physiology and pathology. Due to the heterogeneity of cells among patients, patient's own cells are needed to be obtained, ideally, from one single cell source. This review attempts to identify the appropriate cell sources for development of such models. RECENT FINDINGS Bone marrow and peripheral blood are considered as suitable sources for extraction of osteoblast/osteocyte and osteoclast progenitor cells. Recent studies on these cell sources have shown no significant differences between isolated progenitor cells. However, various parameters such as medium composition affect the cell's proliferation and differentiation potential which could make the peripheral blood-derived stem cells superior to the ones from bone marrow. Peripheral blood can be considered a suitable source for osteoblast/osteocyte and osteoclast progenitor cells, being less invasive for the patient. However, more investigations are needed focusing on extraction and differentiation of both cell types from the same donor sample of peripheral blood.
Collapse
Affiliation(s)
- Sana Ansari
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands
| | - Sandra Hofmann
- Orthopaedic Biomechanics, Department of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, the Netherlands.
| |
Collapse
|
4
|
Girousse A, Mathieu M, Sastourné-Arrey Q, Monferran S, Casteilla L, Sengenès C. Endogenous Mobilization of Mesenchymal Stromal Cells: A Pathway for Interorgan Communication? Front Cell Dev Biol 2021; 8:598520. [PMID: 33490065 PMCID: PMC7820193 DOI: 10.3389/fcell.2020.598520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022] Open
Abstract
To coordinate specialized organs, inter-tissue communication appeared during evolution. Consequently, individual organs communicate their states via a vast interorgan communication network (ICN) made up of peptides, proteins, and metabolites that act between organs to coordinate cellular processes under homeostasis and stress. However, the nature of the interorgan signaling could be even more complex and involve mobilization mechanisms of unconventional cells that are still poorly described. Mesenchymal stem/stromal cells (MSCs) virtually reside in all tissues, though the biggest reservoir discovered so far is adipose tissue where they are named adipose stromal cells (ASCs). MSCs are thought to participate in tissue maintenance and repair since the administration of exogenous MSCs is well known to exert beneficial effects under several pathological conditions. However, the role of endogenous MSCs is barely understood. Though largely debated, the presence of circulating endogenous MSCs has been reported in multiple pathophysiological conditions, but the significance of such cell circulation is not known and therapeutically untapped. In this review, we discuss current knowledge on the circulation of native MSCs, and we highlight recent findings describing MSCs as putative key components of the ICN.
Collapse
Affiliation(s)
- Amandine Girousse
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Maxime Mathieu
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Quentin Sastourné-Arrey
- Sprott Center for Stem Cell Research, Ottawa Hospital Research Institute, Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Sylvie Monferran
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Louis Casteilla
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| | - Coralie Sengenès
- Stromalab, Université de Toulouse, CNRS ERL5311, EFS, INP-ENVT, INSERM U1031, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
5
|
Nam D, Park A, Dubon MJ, Yu J, Kim W, Son Y, Park KS. Coordinated Regulation of Mesenchymal Stem Cell Migration by Various Chemotactic Stimuli. Int J Mol Sci 2020; 21:ijms21228561. [PMID: 33202862 PMCID: PMC7696304 DOI: 10.3390/ijms21228561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 01/14/2023] Open
Abstract
Endogenous bone marrow-derived mesenchymal stem cells are mobilized to peripheral blood and injured tissues in response to changes in the expression of various growth factors and cytokines in the injured tissues, including substance P (SP), transforming growth factor-beta (TGF-β), and stromal cell-derived factor-1 (SDF-1). SP, TGF-β, and SDF-1 are all known to induce the migration of bone marrow-derived mesenchymal stem cells (BM-MSCs). However, it is not yet clear how these stimuli influence or interact with each other during BM-MSC mobilization. This study used mouse bone marrow-derived mesenchymal stem cell-like ST2 cells and human BM-MSCs to evaluate whether SP, TGF-β, and SDF-1 mutually regulate their respective effects on the mobilization of BM-MSCs. SP pretreatment of ST2 and BM-MSCs impaired their response to TGF-β while the introduction of SP receptor antagonist restored the mobilization of ST2 and BM-MSCs in response to TGF-β. TGF-β pretreatment did not affect the migration of ST2 and BM-MSCs in response to SP, but downregulated their migration in response to SDF-1. SP pretreatment modulated the activation of TGF-β noncanonical pathways in ST2 cells and BM-MSCs, but not canonical pathways. These results suggest that the migration of mesenchymal stem cells is regulated by complex functional interactions between SP, TGF-β, and SDF-1. Thus, understanding the complex functional interactions of these chemotactic stimuli would contribute to ensuring the development of safe and effective combination treatments for the mobilization of BM-MSCs.
Collapse
Affiliation(s)
- Donghyun Nam
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (D.N.); (W.K.)
| | - Aran Park
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (A.P.); (M.J.D.); (J.Y.); (Y.S.)
| | - Maria Jose Dubon
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (A.P.); (M.J.D.); (J.Y.); (Y.S.)
| | - Jinyeong Yu
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (A.P.); (M.J.D.); (J.Y.); (Y.S.)
| | - Wootak Kim
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (D.N.); (W.K.)
| | - Youngsook Son
- Graduate School of Biotechnology, Kyung Hee University, Yongin 17104, Korea; (A.P.); (M.J.D.); (J.Y.); (Y.S.)
| | - Ki-Sook Park
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02447, Korea; (D.N.); (W.K.)
- East-West Medical Research Institute, Kyung Hee University, Seoul 02447, Korea
- Correspondence: ; Tel.: +82-(2)-958-9368
| |
Collapse
|
6
|
Abstract
Components of the tumor microenvironment (TME) are known to play an essential role during malignant progression, but often in a context-dependent manner. In bone and soft tissue sarcomas, disease-regulatory activities in the TME remain largely uncharacterized. This chapter introduces the cellular, structural, and chemical composition of the sarcoma TME from a pathobiological and therapeutic perspective.Sarcomas are malignant tumors with diverse features when it comes to primary tumor appearance, metastatic potential, and response to treatment. Many of the classic subtypes are mainly composed of malignant cells and are therefore assumed to be committed to autocrine signaling. Some of the tumors are infiltrated by immune cells and contain necrotic areas or excessive amounts of extracellular matrix (ECM) that regulates tissue stiffness and interstitial fluid pressure. Vascular invasion and blood vessel characteristics can in some instances be considered in the prognostic setting.Further insights into the disease-regulatory activities of the sarcoma TME will provide essential knowledge on how to develop successful combination treatments targeting not only malignant cells, but also their routes of nutrition and ability to shield themselves toward existing therapy.
Collapse
|
7
|
van der Velden DL, Houthuijzen JM, Roodhart JML, van Werkhoven E, Voest EE. Detection of endogenously circulating mesenchymal stem cells in human cancer patients. Int J Cancer 2018; 143:2516-2524. [PMID: 29992568 DOI: 10.1002/ijc.31727] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 05/05/2018] [Accepted: 05/25/2018] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cells (MSCs) can play a vital role in tumor progression and anticancer therapy response, as demonstrated by various in vitro and in vivo model systems. Their ability to home to developing tumors and modulate the tumor microenvironment, by suppressing T-cell responses and contributing to the tumor stroma, is suggested to have a significant impact on disease progression, metastasis formation, and therapy response. Most evidence, however, is derived from artificial models using exogenously administered MSCs. The contribution of endogenous MSCs to tumor progression is currently unclear. Furthermore, few studies have been conducted in humans. A prospective biomarker study was therefore undertaken in 40 human cancer patients and 10 healthy controls of similar age, aimed at (i) exploring and quantifying circulating MSC levels in healthy volunteers and patients with advanced malignancies, (ii) determining the variability of MSC levels between healthy volunteers and cancer patients with different histologic tumor types, and (iii) exploring biomarkers associated with MSC levels. Significantly increased levels of circulating MSC-like cells were observed in cancer patients when compared to healthy individuals (1.72 fold difference, 95% CI 1.03-2.81%, p = 0.03). In addition, prior systemic therapy was associated with a significant increase in MSC-like cells (1.73 fold difference, 95% CI 1.02-2.95, p = 0.04). These results indicate that the amount of endogenously circulating MSCs in humans is increased in response to cancer, and that systemic anticancer treatment can influence MSC levels. Further research is needed to determine whether MSCs have a predictive value.
Collapse
Affiliation(s)
- Daphne L van der Velden
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Julia M Houthuijzen
- Division of Molecular Pathology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jeanine M L Roodhart
- Division of Medical Oncology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Erik van Werkhoven
- Biometrics Department, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Emile E Voest
- Division of Molecular Oncology & Immunology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Liu R, Lin Y, Lin J, Zhang L, Mao X, Huang B, Xiao Y, Chen Z, Chen Z. Blood Prefabrication Subcutaneous Small Animal Model for the Evaluation of Bone Substitute Materials. ACS Biomater Sci Eng 2018; 4:2516-2527. [PMID: 33435115 DOI: 10.1021/acsbiomaterials.8b00323] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Runheng Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yixiong Lin
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Jinying Lin
- Xiamen Stomatological Hospital, Xiamen 361000, China
| | - Linjun Zhang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Xueli Mao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Baoxin Huang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Yin Xiao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
- Institute of Health and Biomedical Innovation and the Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane 4059, Australia
| | - Zhuofan Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zetao Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
9
|
Cortini M, Avnet S, Baldini N. Mesenchymal stroma: Role in osteosarcoma progression. Cancer Lett 2017; 405:90-99. [PMID: 28774797 DOI: 10.1016/j.canlet.2017.07.024] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/19/2017] [Accepted: 07/23/2017] [Indexed: 12/21/2022]
Abstract
The initiation and progression of malignant tumors are supported by their microenvironment: cancer cells per se cannot explain growth and formation of the primary or metastasis, and a combination of proliferating tumor cells, cancer stem cells, immune cells mesenchymal stromal cells and/or cancer-associated fibroblasts all contribute to the tumor bulk. The interaction between these multiple players, under different microenvironmental conditions of biochemical and physical stimuli (i.e. oxygen tension, pH, matrix mechanics), regulates the production and biological activity of several soluble factors, extracellular matrix components, and extracellular vesicles that are needed for growth, maintenance, chemoresistance and metastatization of cancer. In osteosarcoma, a very aggressive cancer of young adults characterized by the extensive need for more effective therapies, this aspect has been only recently explored. In this view, we will discuss the role of stroma, with a particular focus on the mesenchymal stroma, contributing to osteosarcoma progression through inherent features for homing, neovascularization, paracrine cross-feeding, microvesicle secretion, and immune modulation, and also by responding to the changes of the microenvironment that are induced by tumor cells. The most recent advances in the molecular cues triggered by cytokines, soluble factors, and metabolites that are partially beginning to unravel the axis between stromal elements of mesenchymal origin and osteosarcoma cells, will be reviewed providing insights likely to be used for novel therapeutic approaches against sarcomas.
Collapse
Affiliation(s)
- Margherita Cortini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy; Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
10
|
Avnet S, Di Pompo G, Chano T, Errani C, Ibrahim-Hashim A, Gillies RJ, Donati DM, Baldini N. Cancer-associated mesenchymal stroma fosters the stemness of osteosarcoma cells in response to intratumoral acidosis via NF-κB activation. Int J Cancer 2017; 140:1331-1345. [PMID: 27888521 DOI: 10.1002/ijc.30540] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/09/2016] [Indexed: 12/12/2022]
Abstract
The role of mesenchymal stem cells (MSC) in osteosarcoma (OS), the most common primary tumor of bone, has not been extensively elucidated. We have recently shown that OS is characterized by interstitial acidosis, a microenvironmental condition that is similar to a wound setting, in which mesenchymal reactive cells are activated to release mitogenic and chemotactic factors. We therefore intended to test the hypothesis that, in OS, acid-activated MSC influence tumor cell behavior. Conditioned media or co-culture with normal MSC previously incubated with short-term acidosis (pH 6.8 for 10 hr, H+ -MSC) enhanced OS clonogenicity and invasion. This effect was mediated by NF-κB pathway activation. In fact, deep-sequencing analysis, confirmed by Real-Time PCR and ELISA, demonstrated that H+ -MSC differentially induced a tissue remodeling phenotype with increased expression of RelA, RelB and NF-κB1, and downstream, of CSF2/GM-CSF, CSF3/G-CSF and BMP2 colony-promoting factors, and of chemokines (CCL5, CXCL5 and CXCL1), and cytokines (IL6 and IL8), with an increased expression of CXCR4. An increased expression of IL6 and IL8 were found only in normal stromal cells, but not in OS cells, and this was confirmed in tumor-associated stromal cells isolated from OS tissue. Finally, H+ -MSC conditioned medium differentially promoted OS stemness (sarcosphere number, stem-associated gene expression), and chemoresistance also via IL6 secretion. Our data support the hypothesis that the acidic OS microenvironment is a key factor for MSC activation, in turn promoting the secretion of paracrine factors that influence tumor behavior, a mechanism that holds the potential for future therapeutic interventions aimed to target OS.
Collapse
Affiliation(s)
- Sofia Avnet
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Gemma Di Pompo
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Tokuhiro Chano
- Department of Clinical Laboratory Medicine, Shiga University of Medical Science, Otsu, Shiga, Japan
| | - Costantino Errani
- Orthopaedic Oncology Surgical Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Arig Ibrahim-Hashim
- Department of Imaging Research, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Robert J Gillies
- Department of Imaging Research, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Davide Maria Donati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Orthopaedic Oncology Surgical Unit, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nicola Baldini
- Orthopaedic Pathophysiology and Regenerative Medicine Unit, Istituto Ortopedico Rizzoli, Bologna, Italy.,Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
11
|
Pieper IL, Smith R, Bishop JC, Aldalati O, Chase AJ, Morgan G, Thornton CA. Isolation of Mesenchymal Stromal Cells From Peripheral Blood of ST Elevation Myocardial Infarction Patients. Artif Organs 2017; 41:654-666. [DOI: 10.1111/aor.12829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/16/2016] [Accepted: 06/30/2016] [Indexed: 12/18/2022]
Affiliation(s)
| | - Rachel Smith
- Swansea University Medical School, Institute of Life Science
| | | | - Omar Aldalati
- Regional Cardiac Centre, Morriston Hospital; Swansea Wales UK
| | - Alex J. Chase
- Regional Cardiac Centre, Morriston Hospital; Swansea Wales UK
| | - Gareth Morgan
- Swansea University Medical School, Institute of Life Science
| | | |
Collapse
|
12
|
Tellez-Gabriel M, Brown HK, Young R, Heymann MF, Heymann D. The Challenges of Detecting Circulating Tumor Cells in Sarcoma. Front Oncol 2016; 6:202. [PMID: 27656422 PMCID: PMC5013264 DOI: 10.3389/fonc.2016.00202] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 08/26/2016] [Indexed: 12/11/2022] Open
Abstract
Sarcomas are a heterogeneous group of malignant neoplasms of mesenchymal origin, many of which have a propensity to develop distant metastases. Cancer cells that have escaped from the primary tumor are able to invade into surrounding tissues, to intravasate into the bloodstream to become circulating tumor cells (CTCs), and are responsible for the generation of distant metastases. Due to the rarity of these tumors and the absence of specific markers expressed by sarcoma tumor cells, the characterization of sarcoma CTCs has to date been relatively limited. Current techniques for isolating sarcoma CTCs are based on size criteria, the identification of circulating cells that express either common mesenchymal markers, sarcoma-specific markers, such as CD99, CD81, or PAX3, and chromosomal translocations found in certain sarcoma subtypes, such as EWS-FLI1 in Ewing’s sarcoma, detection of osteoblast-related genes, or measurement of the activity of specific metabolic enzymes. Further studies are needed to improve the isolation and characterization of sarcoma CTCs, to demonstrate their clinical significance as predictive and/or prognostic biomarkers, and to utilize CTCs as a tool for investigating the metastatic process in sarcoma and to identify novel therapeutic targets. The present review provides a short overview of the most recent literature on CTCs in sarcoma.
Collapse
Affiliation(s)
- Marta Tellez-Gabriel
- UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue 2012, Faculty of Medicine, INSERM, University of Nantes, Nantes, France; Laboratotio Hematologia Oncologica y de Transplantes, Institut Investigacions Biomèdiques (IBB) Sant Pau, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Hannah K Brown
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK; European Associated Laboratory, INSERM-University of Sheffield, Sarcoma Research Unit, Medical School, Sheffield, UK
| | - Robin Young
- Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK; European Associated Laboratory, INSERM-University of Sheffield, Sarcoma Research Unit, Medical School, Sheffield, UK
| | - Marie-Françoise Heymann
- UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue 2012, Faculty of Medicine, INSERM, University of Nantes, Nantes, France; Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK; European Associated Laboratory, INSERM-University of Sheffield, Sarcoma Research Unit, Medical School, Sheffield, UK; Nantes University Hospital, Nantes, France
| | - Dominique Heymann
- UMR 957, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours, Equipe Ligue 2012, Faculty of Medicine, INSERM, University of Nantes, Nantes, France; Department of Oncology and Metabolism, Medical School, University of Sheffield, Sheffield, UK; European Associated Laboratory, INSERM-University of Sheffield, Sarcoma Research Unit, Medical School, Sheffield, UK; Nantes University Hospital, Nantes, France
| |
Collapse
|
13
|
Fu Q, Zhang Q, Jia LY, Fang N, Chen L, Yu LM, Liu JW, Zhang T. Isolation and Characterization of Rat Mesenchymal Stem Cells Derived from Granulocyte Colony-Stimulating Factor-Mobilized Peripheral Blood. Cells Tissues Organs 2016; 201:412-422. [PMID: 27246344 DOI: 10.1159/000445855] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2016] [Indexed: 11/19/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have been isolated from many tissues and organs. However, there is much dispute as to whether MSCs exist in peripheral blood. This may be due to the limited identification methods of MSCs, especially the lack of detection markers for phenotypic characteristics. In this study, as many as 10 surface markers of MSCs derived from rat peripheral blood (rPBMSCs) were analyzed after granulocyte colony-stimulating factor mobilization. Our results suggest that mobilized rPBMSCs overexpress mesenchymal markers, including CD90, CD44, CD29, CD73 and CD105, but do not express CD45, CD11b, CD79a, CD34 or HLA-DR. This is in conformity with the standard definition of MSCs by the International Society for Cellular Therapy. In addition, the colony-forming efficiency of the mobilized rat peripheral blood was 15.83 ± 1.61/106, significantly outnumbering that of the nonmobilized group, which was 0.28 ± 0.1/106 (p < 0.01). Combining the growth characteristics with the differential capacities of mobilized rPBMSCs towards forming osteocytes, chondrocytes and adipocytes, we further confirmed the existence of rPBMSCs. Additionally, this treatment could improve locomotive function after spinal cord injury (SCI) in rats. Due to their convenient collection, fewer complications, cost effectiveness and suitability for autograft, PBMSCs might be a substitute for MSCs derived from bone marrow and provide promising prospects for the cell-based therapy of SCI.
Collapse
Affiliation(s)
- Qiang Fu
- Key Laboratory of Cell Engineering of Guizhou Province, The Affiliated Hospital of Zunyi Medical College, Zunyi, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
The angiogenic related functions of bone marrow mesenchymal stem cells are promoted by CBDL rat serum via the Akt/Nrf2 pathway. Exp Cell Res 2016; 344:86-94. [PMID: 27105936 DOI: 10.1016/j.yexcr.2016.04.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 04/01/2016] [Accepted: 04/17/2016] [Indexed: 12/22/2022]
Abstract
Hepatopulmonary syndrome (HPS) is a complication of severe liver disease. It is characterized by an arterial oxygenation defect. Recent studies have demonstrated that pulmonary angiogenesis contributes to the abnormal gas exchange found in HPS. Additionally, mesenchymal stem cells (MSCs) are considered the stable source of VEGF-producing cells and have the potential to differentiate into multiple cell types. However, it has not been determined whether bone marrow mesenchymal stem cells (BM-MSCs) are mobilized and involved in the pulmonary angiogenesis in HPS. In this study, a CFU-F assay showed that the number of peripheral blood MSCs was increased in common bile duct ligation (CBDL) rats; however, there was no significant difference found in the number of BM-MSCs. In vitro, CBDL rat serum induced the overexpression of CXCR4 and PCNA in BM-MSCs. Consistently, the directional migration as well as the proliferation ability of BM-MSCs were enhanced by CBDL rat serum, as determined by a transwell migration and MTT assays. Moreover, the secretion of VEGF by BM-MSCs increased after treatment with CBDL rat serum. We also found that the expression of phospho-Akt, phospho-ERK, and Nrf2 in BM-MSCs was significantly up-regulated by CBDL rat serum in a time dependent manner, and the blockage of the Akt/Nrf2 signalling pathway with an Akt Inhibitor or Nrf2 siRNA, instead of an ERK inhibitor, attenuated the migration, proliferation and paracrine capacity of BM-MSCs. In conclusion, these findings indicated that the number of MSCs increased in the peripheral blood of CBDL rats, and the Akt/Nrf2 pathway plays a vital role in promoting the angiogenic related functions of BM-MSCs, which could be a potent contributor to pulmonary angiogenesis in HPS.
Collapse
|
15
|
Zhou K, Xia M, Tang B, Yang D, Liu N, Tang D, Xie H, Wang X, Zhu H, Liu C, Zuo C. Isolation and comparison of mesenchymal stem cell‑like cells derived from human gastric cancer tissues and corresponding ovarian metastases. Mol Med Rep 2015; 13:1788-94. [PMID: 26718033 DOI: 10.3892/mmr.2015.4735] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Accepted: 12/02/2015] [Indexed: 11/06/2022] Open
Abstract
Mesenchymal stem cell (MSC)-like cells have been isolated from various types of tumor. It has previously been reported that MSCs are involved in tumorigenesis and its prognosis. The aim of the present study was to isolate and compare MSC-like cells from human gastric cancer (GC) and its metastatic deposits in ovarian tissue. MSC-like cells were isolated from human gastric cancer (hGC-MSCs) and the corresponding ovarian metastatic tissues (hGCOM-MSCs) from 40 patients. The characteristics of hGC-MSCs and hGCOM-MSCs, including their morphology, surface antigens, specific gene expression and differentiation potential, were similar to those of MSCs derived from human bone marrow (hBM-MSCs) but different from GC cells. In conclusion, the present study demonstrated that MSC-like cells could be isolated from GC tissue and its ovarian metastatic tissues. The existence of MSC-like cells in GC tissues and its ovarian metastatic tissues suggests that they may be a potential target for cancer therapy, and provides an experimental foundation for investigating their role in the initiation and progression of ovarian metastasis of GC.
Collapse
Affiliation(s)
- Kunyan Zhou
- Department of Gastroduodenal and Pancreatic Surgery, Laboratory of Digestive Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Man Xia
- Department of Gynaecological Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Bo Tang
- Department of Gastroduodenal and Pancreatic Surgery, Laboratory of Digestive Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Darong Yang
- Department of Gastroduodenal and Pancreatic Surgery, Laboratory of Digestive Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Nianli Liu
- Department of Molecular Medicine, College of Biology, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, Hunan 410082, P.R. China
| | - Dihong Tang
- Department of Gynaecological Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Hailong Xie
- Cancer Research Institute, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaohong Wang
- Department of Gastroduodenal and Pancreatic Surgery, Laboratory of Digestive Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Haizhen Zhu
- Department of Gastroduodenal and Pancreatic Surgery, Laboratory of Digestive Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chen Liu
- Department of Pathology, Immunology and Laboratory Medicine, Shands Cancer Center, University of Florida, Gainesville, FL 32610‑0275, USA
| | - Chaohui Zuo
- Department of Gastroduodenal and Pancreatic Surgery, Laboratory of Digestive Oncology, Hunan Cancer Hospital and Affiliated Cancer Hospital of Xiangya Medical School, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
16
|
Yang Y, Pang D, Hu C, Lv Y, He T, An Y, Tang Z, Deng Z. Nestin Positive Bone Marrow Derived Cells Responded to Injury Mobilize into Peripheral Circulation and Participate in Skin Defect Healing. PLoS One 2015; 10:e0143368. [PMID: 26633897 PMCID: PMC4669078 DOI: 10.1371/journal.pone.0143368] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 11/02/2015] [Indexed: 12/13/2022] Open
Abstract
Exogenously infused mesenchymal stem cells (MSCs) are thought to migrate to injury site through peripheral blood stream and participate in tissue repair. However, whether and how endogenous bone marrow MSCs mobilized to circulating and targeted to tissue injury has raised some controversy, and related studies were restricted by the difficulty of MSCs identifying in vivo. Nestin, a kind of intermediate filament protein initially identified in neuroepithelial stem cells, was recently reported as a credible criteria for MSCs in bone marrow. In this study, we used a green fluorescent protein (GFP) labeled bone marrow replacement model to trace the nestin positive bone marrow derived cells (BMDCs) of skin defected-mice. We found that after skin injured, numbers of nestin+ cells in peripheral blood and bone marrow both increased. A remarkable concentration of nestin+ BMDCs around skin wound was detected, while few of these cells could be observed in uninjured skin or other organs. This recruitment effect could not be promoted by granulocyte colony-stimulating factor (G-CSF), suggests a different mobilization mechanism from ones G-CSF takes effect on hematopoietic cells. Our results proposed nestin+ BMDCs as mobilized candidates in skin injury repair, which provide a new insight of endogenous MSCs therapy.
Collapse
Affiliation(s)
- Yi Yang
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Oral Prosthodontics, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Danlin Pang
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
- Xiangya Stomatology Hospital, Central South University, Changsha, Hunan, China
| | - Chenghu Hu
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
- Xi’an Institute of Tissue Engineering & Regenerative Medicine, Shaanxi, China
| | - Yajie Lv
- Department of Dermatology, Tangdu Hospital, Fourth Military Medical University, Xi’an, Shannxi, China
| | - Tao He
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yulin An
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Zhangui Tang
- Xiangya Stomatology Hospital, Central South University, Changsha, Hunan, China
- * E-mail: (ZD)’ (ZT)
| | - Zhihong Deng
- State Key Laboratory of Military Stomatology, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Otolaryngology, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi, China
- * E-mail: (ZD)’ (ZT)
| |
Collapse
|
17
|
Bonuccelli G, Avnet S, Grisendi G, Salerno M, Granchi D, Dominici M, Kusuzaki K, Baldini N. Role of mesenchymal stem cells in osteosarcoma and metabolic reprogramming of tumor cells. Oncotarget 2015; 5:7575-88. [PMID: 25277190 PMCID: PMC4202145 DOI: 10.18632/oncotarget.2243] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The tumor microenvironment plays an important role in cancer progression. Here, we focused on the role of reactive mesenchymal stem cells (MSC) in osteosarcoma (OS), and used human adipose MSC and a panel of OS cell lines (Saos-2, HOS, and 143B) to investigate the mutual effect of normal-cancer cell metabolic programming. Our results showed that MSC are driven by oxidative stress induced by OS cells to undergo Warburg metabolism, with increased lactate production. Therefore, we analyzed the expression of lactate monocarboxylate transporters. By real time PCR and immunofluorescence, in MSC we detected the expression of MCT-4, the transporter for lactate efflux, whereas MCT-1, responsible for lactate uptake, was expressed in OS cells. In agreement, silencing of MCT-1 by siRNA significantly affected the ATP production in OS cancer cells. Thus, cancer cells directly increase their mitochondrial biogenesis using this energy-rich metabolite that is abundantly provided by MSC as an effect of the altered microenvironmental conditions induced by OS cells. We also showed that lactate produced by MSC promotes the migratory ability of OS cells. These data provide novel information to be exploited for cancer therapies targeting the mutual metabolic reprogramming of cancer cells and their stroma.
Collapse
Affiliation(s)
- Gloria Bonuccelli
- Department of Biomedical and Neuromotion Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Sofia Avnet
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Giulia Grisendi
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Manuela Salerno
- Department of Biomedical and Neuromotion Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Donatella Granchi
- Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, Bologna, Italy
| | - Massimo Dominici
- Department of Medical and Surgical Sciences for Children and Adults, University-Hospital of Modena and Reggio Emilia, Modena, Italy
| | - Katsuyuki Kusuzaki
- Department of Molecular Cell Physiology, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kyoto, Japan
| | - Nicola Baldini
- Department of Biomedical and Neuromotion Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy. Laboratory for Orthopedic Pathophysiology and Regenerative Medicine, Rizzoli Orthopedic Institute, Bologna, Italy
| |
Collapse
|
18
|
Zheng R, Park Y, Kim S, Cho J, Heo S, Koak J, Lee S, Park J, Lee J, Kim J. Bone Regeneration of Blood-derived Stem Cells within Dental Implants. J Dent Res 2015; 94:1318-25. [DOI: 10.1177/0022034515590368] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Peripheral blood (PB) is known as a source of mesenchymal stem cells (MSCs), as is bone marrow (BM), and is acquired easily. However, it is difficult to have enough MSCs, and their osteogenic capacity with dental implantations is scarce. Therefore, we characterized peripheral blood mesenchymal stem cells (PBMSCs) cultured on a bone marrow–derived mesenchymal stem cell (BMMSC) natural extracellular matrix (ECM) and demonstrated the osteogenic capability in an experimental chamber implant surgery model in rabbits. We isolated PBMSCs from rabbits by culturing on a natural ECM-coated plate during primary culture. We characterized the PBMSCs using a fluorescence-activated cell scanner, cell proliferation assay, and multiple differentiation assay and compared them with BMMSCs. We also analyzed the osteogenic potential of PBMSCs mixed with hydroxyapatite/tricalcium phosphate (HA/TCP) by transplanting them into immunocompromised mice. Then, the mixture was applied to the canals. After 3 and 6 wk, we analyzed new bone (NB) formation inside the chambers using histological and histomorphometric analyses. The PBMSCs had a similar rate of BrdU-positive cells to BMMSCs, positively expressing CD90 but negative for CD14. The PBMSCs also showed osteogenic, adipogenic, and chondrogenic ability in vitro and osteogenic ability in vivo. Histological and histomorphometric results illustrated that the PBMSC and BMMSC groups showed higher NB than the HA/TCP and defect groups in the upper and lower chambers at 6 wk and in the upper canal at 3 wk; however, there was no difference in NB among all groups in the lower canal at 3 wk. The PBMSCs have characteristics and bone regeneration ability similar to BMMSCs both in vitro and in vivo. ECM was effective for obtaining PBMSCs. Therefore, PBMSCs are a promising source for bone regeneration for clinical use.
Collapse
Affiliation(s)
- R.C. Zheng
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Y.K. Park
- Department of Dental Research Institute, Brain Korea 21, Seoul National University, Seoul, South Korea
| | - S.K. Kim
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| | - J. Cho
- Department of Dental Regenerative Biotechnology, School of Dentistry, Seoul, South Korea
| | - S.J. Heo
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| | - J.Y. Koak
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| | - S.J. Lee
- Department of Orthodontics & Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - J.M. Park
- Department of Prosthodontics, Seoul National University Gwanak Dental Hospital, Seoul, South Korea
| | - J.H. Lee
- Department of Prosthodontics, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, South Korea
| | - J.H. Kim
- Department of Prosthodontics & Dental Research Institute, Seoul National University Dental Hospital, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|
19
|
Yang T, Zhang J, Cao Y, Zhang M, Jing L, Jiao K, Yu S, Chang W, Chen D, Wang M. Wnt5a/Ror2 mediates temporomandibular joint subchondral bone remodeling. J Dent Res 2015; 94:803-12. [PMID: 25749876 DOI: 10.1177/0022034515576051] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Increased subchondral trabecular bone turnover due to imbalanced bone-resorbing and bone-forming activities is a hallmark of osteoarthritis (OA). Wnt5a/Ror2 signaling, which can derive from bone marrow stromal cells (BMSCs), takes a role in modulating osteoblast and osteoclast formation. We showed previously that experimentally unilateral anterior crossbites (UACs) elicited OA-like lesions in mice temporomandibular joints (TMJs), displaying as subchondral trabecular bone loss. Herein, we tested the role of BMSC-derived Wnt5a/Ror2 signaling in regulating osteoclast precursor migration and differentiation in this process. The data confirmed the decreased bone mass, increased tartrate-resistant acid phosphatase (TRAP)-positive cell number, and enhanced osteoclast activity in TMJ subchondral trabecular bone of UAC-treated rats. Interestingly, the osteoblast activity in the tissue of TMJ subchondral trabecular bone of these UAC-treated rats was also enhanced, displaying as upregulated expressions of osteoblast markers and increased proliferation, migration, and differentiation capabilities of the locally isolated BMSCs. These BMSCs showed an increased CXCL12 protein expression level and upregulated messenger RNA expressions of Rankl, Wnt5a, and Ror2. Ex vivo data showed that their capacities of inducing migration and differentiation of osteoclast precursors were enhanced, and these enhanced capabilities were restrained after blocking their Ror2 signaling using small interfering RNA (siRNA) assays. Reducing Ror2 expression in the BMSC cell line by siRNA or blocking the downstream signalings with specific inhibitors also demonstrated a suppression of the capacity of the BMSC cell line to promote Wnt5a-dependent migration (including SP600125 and cyclosporine A) and differentiation (cyclosporine A only) of osteoclast precursors. These findings support the idea that Wnt5a/Ror2 signaling in TMJ subchondral BMSCs enhanced by UAC promoted BMSCs to increase Cxcl12 and Rankl expression, in which JNK and/or Ca(2+)/NFAT pathways were involved and therefore were engaged in enhancing the migration and differentiation of osteoclast precursors, leading to increased osteoclast activity and an overall TMJ subchondral trabecular bone loss in the UAC-treated rats.
Collapse
Affiliation(s)
- T Yang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, the Fourth Military Medical University, Xi'an, Shaanxi, China Department of Stomatology, Chinese PLA General Hospital, Beijing, China
| | - J Zhang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Y Cao
- Department of Cardiac Surgery, Air Force General Hospital, PLA, Beijing, China
| | - M Zhang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - L Jing
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - K Jiao
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - S Yu
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - W Chang
- Endocrine Research Unit, Department of Veterans Affairs Medical Center, Department of Medicine, University of California, San Francisco, CA, USA
| | - D Chen
- Department of Biochemistry, Rush University Medical Center, Chicago, IL, USA
| | - M Wang
- State Key Laboratory of Military Stomatology, Department of Oral Anatomy and Physiology, School of Stomatology, the Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
20
|
Migration mechanism of mesenchymal stem cells studied by QD/NSOM. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:859-68. [PMID: 25534714 DOI: 10.1016/j.bbamem.2014.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 12/10/2014] [Accepted: 12/12/2014] [Indexed: 01/31/2023]
Abstract
The migration of mesenchymal stem cells (MSCs) plays a key role in tumor-targeted delivery vehicles and tumor-related stroma formation. However, there so far has been no report on the distribution of cell surface molecules during the VEGF-induced migration of MSCs. Here, we have utilized near-field scanning optical microscopy (NSOM) combined with fluorescent quantum dot (QD)-based nano-technology to capture the functional relationship between CD44 and CD29 adhesion molecules on MSCs and the effect of their spatial rearrangements. Before VEGF-induced migration of MSCs, both CD44 and CD29 formed 200-220 nm nano-domains respectively, with little co-localization between the two types of domains. Surprisingly, the size of the CD44 nano-domain rapidly increased in size to 295 nm and apparently larger aggregates were formed following MSC treatment with VEGF for 10 min, while the area of co-localization increased to 0.327 μm2. Compared with CD44, CD29 was activated obviously later, for the fact that CD29 aggregation didn't appear until 30 min after VEGF treatment. Consistently, its co-localization area increased to 0.917 μm2. The CD44 and CD29 nano-domains further aggregated into larger nano-domains or even formed micro-domains on the membrane of activated MSCs. The aggregation and co-localization of these molecules promoted FAK formation and cytoskeleton rearrangement. All of the above changes induced by VEGF contributed to MSC migration. Taken together, our data of NSOM-based dual color fluorescent imaging demonstrated for the first time that CD44, together with CD29, involved in VEGF-induced migration of MSCs through the interaction between CD44 and its co-receptor of VEGFR-2.
Collapse
|
21
|
Decreased bone marrow stromal cells activity involves in unilateral anterior crossbite-induced early subchondral bone loss of temporomandibular joints. Arch Oral Biol 2014; 59:962-9. [DOI: 10.1016/j.archoralbio.2014.05.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Revised: 03/29/2014] [Accepted: 05/25/2014] [Indexed: 01/26/2023]
|
22
|
Fu WL, Zhou CY, Yu JK. A new source of mesenchymal stem cells for articular cartilage repair: MSCs derived from mobilized peripheral blood share similar biological characteristics in vitro and chondrogenesis in vivo as MSCs from bone marrow in a rabbit model. Am J Sports Med 2014; 42:592-601. [PMID: 24327479 DOI: 10.1177/0363546513512778] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Bone marrow (BM) has been considered as a major source of mesenchymal stem cells (MSCs), but it has many disadvantages in clinical application. However, MSCs from peripheral blood (PB) could be obtained by a less invasive method and be more beneficial for autologous transplantation than BM MSCs, which makes PB a promising source for articular cartilage repair in clinical use. PURPOSE To assess whether MSCs from mobilized PB of New Zealand White rabbits have similar biological characteristics in vitro and chondrogenesis in vivo as BM MSCs. STUDY DESIGN Controlled laboratory study. METHODS A combined method of drug administration containing granulocyte colony stimulating factor (G-CSF) plus CXCR4 antagonist AMD3100 was adopted to mobilize the PB stem cells of adult New Zealand White rabbits in vitro. The isolated cells were identified as MSCs by morphological characteristics, surface markers, and differentiation potentials. A comparison between PB MSCs and BM MSCs was made in terms of biological characteristics in vitro and chondrogenesis in vivo. This issue was investigated from the aspects of morphology, immune phenotype, multiple differentiation capacity, expansion potential, antiapoptotic capacity, and ability to repair cartilage defects in vivo of PB MSCs compared with BM MSCs. RESULTS Peripheral blood MSCs were successfully mobilized by the method of combined drug administration, then isolated, expanded, and identified in vitro. No significant difference was found concerning the morphology, immune phenotype, and antiapoptotic capacity between PB MSCs and BM MSCs. Significantly, MSCs from both sources compounded with decalcified bone matrix showed the same ability to repair cartilage defects in vivo. For multipluripotency, BM MSCs exhibited a more osteogenic potential and higher proliferation capacity than PB MSCs, whereas PB MSCs possessed a stronger adipogenic and chondrogenic differentiation potential than BM MSCs in vitro. CONCLUSION Although there are some differences in the proliferation and differentiation aspects between the 2 sources, PB MSCs share certain similar biological characteristics in vitro and chondrogenesis in vivo as BM MSCs. CLINICAL RELEVANCE These results suggest that PB MSCs are a new source of seed cells used in articular cartilage repair.
Collapse
Affiliation(s)
- Wei-Li Fu
- Jia-Kuo Yu, Institute of Sports Medicine, Peking University Third Hospital, 49 North Garden Road, Haidian District, Beijing 100191, China. or Chunyan Zhou, PhD, Department of Biochemistry and Molecular Biology, Peking University School of Basic Medical Sciences, 38 Xueyuan Road, Haidian District, Beijing 100191, China (e-mail: )
| | | | | |
Collapse
|
23
|
Treatment-induced host-mediated mechanisms reducing the efficacy of antitumor therapies. Oncogene 2013; 33:1341-7. [PMID: 23524584 DOI: 10.1038/onc.2013.94] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 02/03/2013] [Accepted: 02/03/2013] [Indexed: 12/22/2022]
Abstract
In addition to its direct effects on tumor cells, chemotherapy can rapidly activate various host processes that contribute to therapy resistance and tumor regrowth. The host response to chemotherapy consists of changes in numerous cell types and cytokines. Examples include the acute mobilization and tumor homing of pro-angiogenic bone marrow-derived cells, activation of cells in the tumor microenvironment to produce systemic or paracrine factors, and tissue-specific responses that provide a protective niche for tumor cells. All of these factors reduce chemotherapy efficacy, and blocking the host response at various levels may therefore significantly improve treatment outcome. However, before the combination of conventional chemotherapy with agents blocking specific aspects of the host response can be implemented into clinical practice, a better understanding of the molecular mechanisms behind the host response is required.
Collapse
|
24
|
Lyahyai J, Mediano DR, Ranera B, Sanz A, Remacha AR, Bolea R, Zaragoza P, Rodellar C, Martín-Burriel I. Isolation and characterization of ovine mesenchymal stem cells derived from peripheral blood. BMC Vet Res 2012; 8:169. [PMID: 22999337 PMCID: PMC3514285 DOI: 10.1186/1746-6148-8-169] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 09/17/2012] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) are multipotent stem cells with capacity to differentiate into several mesenchymal lineages. This quality makes MSCs good candidates for use in cell therapy. MSCs can be isolated from a variety of tissues including bone marrow and adipose tissue, which are the most common sources of these cells. However, MSCs can also be isolated from peripheral blood. Sheep has been proposed as an ideal model for biomedical studies including those of orthopaedics and transmissible spongiform encephalopathies (TSEs). The aim of this work was to advance these studies by investigating the possibility of MSC isolation from ovine peripheral blood (oPB-MSCs) and by subsequently characterizing there in vitro properties. RESULTS Plastic-adherent fibroblast-like cells were obtained from the mononuclear fraction of blood samples. These cells were analysed for their proliferative and differentiation potential into adipocytes, osteoblasts and chondrocytes, as well as for the gene expression of cell surface markers. The isolated cells expressed transcripts for markers CD29, CD73 and CD90, but failed to express the haematopoietic marker CD45 and expressed only low levels of CD105. The expression of CD34 was variable. The differentiation potential of this cell population was evaluated using specific differentiation media. Although the ability of the cultures derived from different animals to differentiate into adipocytes, osteoblasts and chondrocytes was heterogeneous, we confirmed this feature using specific staining and analysing the gene expression of differentiation markers. Finally, we tested the ability of oPB-MSCs to transdifferentiate into neuronal-like cells. Morphological changes were observed after 24-hour culture in neurogenic media, and the transcript levels of the neurogenic markers increased during the prolonged induction period. Moreover, oPB-MSCs expressed the cellular prion protein gene (PRNP), which was up-regulated during neurogenesis. CONCLUSIONS This study describes for the first time the isolation and characterization of oPB-MSCs. Albeit some variability was observed between animals, these cells retained their capacity to differentiate into mesenchymal lineages and to transdifferentiate into neuron-like cells in vitro. Therefore, oPB-MSCs could serve as a valuable tool for biomedical research in fields including orthopaedics or prion diseases.
Collapse
Affiliation(s)
- Jaber Lyahyai
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, Miguel Servet 177, Zaragoza, 50013, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Fu WL, Zhang JY, Fu X, Duan XN, Leung KKM, Jia ZQ, Wang WP, Zhou CY, Yu JK. Comparative Study of the Biological Characteristics of Mesenchymal Stem Cells from Bone Marrow and Peripheral Blood of Rats. Tissue Eng Part A 2012; 18:1793-803. [PMID: 22721583 DOI: 10.1089/ten.tea.2011.0530] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- Wei-Li Fu
- Institute of Sports Medicine, Peking University Third Hospital, Beijing, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
STAT3 activation by IL-6 from mesenchymal stem cells promotes the proliferation and metastasis of osteosarcoma. Cancer Lett 2012; 325:80-8. [PMID: 22743617 DOI: 10.1016/j.canlet.2012.06.006] [Citation(s) in RCA: 148] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/14/2012] [Accepted: 06/09/2012] [Indexed: 12/12/2022]
Abstract
We previously demonstrated that human mesenchymal stem cells (MSCs) promote the growth of osteosarcoma in the bone microenvironment. The aim of the present study was to further determine the effect of IL-6/STAT3 signaling on the progression of osteosarcoma. First, conditioned medium from MSCs was used to stimulate the growth of osteosarcoma cells (Saos-2) in vitro. We found that STAT3 was activated and that the activation could be blocked by an IL-6-neutralizing antibody. The inhibition of STAT3 in Saos-2 cells by siRNA or AG490 decreased cell proliferation, migration and invasion, down-regulated the mRNA expression of Cyclin D, Bcl-xL and Survivin and enhanced the apoptotic response. Furthermore, a nude mouse osteosarcoma model was established by injecting luciferase-labeled Saos-2 cells into the tibia, and the effect of STAT3 on tumor growth was determined by treating the mice with AG490. In vivo bioluminescence images showed that tumor growth was dramatically reduced in the AG490 group. In addition, STAT3 inhibition decreased the lung metastasis rate and prolonged the survival of these mice. After treatment with AG490, the protein levels of IL-6, p-STAT3 and PCNA were decreased, and the level of apoptosis in the tumor was increased. Altogether, these data indicate that MSCs in the bone microenvironment might promote the progression of osteosarcoma and protect tumor cells from drug-induced apoptosis through IL-6/STAT3 signaling.
Collapse
|
27
|
Burns JS, Safwat A, Grisendi G, Kassem M, Dominici M. Sarcomas as a mise en abyme of mesenchymal stem cells: exploiting interrelationships for cell mediated anticancer therapy. Cancer Lett 2012; 325:1-10. [PMID: 22659735 DOI: 10.1016/j.canlet.2012.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2012] [Revised: 05/22/2012] [Accepted: 05/24/2012] [Indexed: 12/24/2022]
Abstract
Mise en abyme meaning "placed into abyss or infinite recurrence" is an apt paradigm for the relentless growth of sarcoma cells. Its alternative meaning, "self-reflexive embedding" fits the central role attributed to cancer stem cells (CSCs). Diversely sourced and defined, mesenchymal stem cells (MSCs) may be the cells of sarcoma origin, evolve a CSC phenotype and/or contribute to tumor growth through inherent qualities for homing, neovascularization, paracrine cross-feeding, microvesicle secretion, cell fusion, entosis and immune modulation. Exploiting these qualities, MSC expressing modified forms of the TNF-related apoptosis-inducing ligand (Apo2L/TRAIL) are being developed to complement more conventional radiation and chemotherapy.
Collapse
Affiliation(s)
- Jorge S Burns
- Laboratory of Cell Biology and Advanced Cancer Therapies, Department of Oncology, Hematology and Respiratory Disease, University Hospital of Modena and Reggio Emilia, Modena, Italy.
| | | | | | | | | |
Collapse
|
28
|
The role of mesenchymal stem cells in anti-cancer drug resistance and tumour progression. Br J Cancer 2012; 106:1901-6. [PMID: 22596239 PMCID: PMC3388567 DOI: 10.1038/bjc.2012.201] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
It is becoming increasingly clear that the tumour microenvironment has a very important role in tumour progression and drug resistance. Many different cell types within the tumour stroma have an effect on tumour progression either in a positive or in a negative way. Mesenchymal stem cells (MSCs) are a distinct population of cells that have been linked with tumour growth. Mesenchymal stem cells can home to tumours where they modulate the immune system and facilitate tumour growth, angiogenesis and metastasis. Recent studies have shown that MSCs also have an important role in the resistance to various anti-cancer drugs. This mini-review provides an overview of the functional properties of MSCs in tumour progression and drug resistance.
Collapse
|
29
|
El Haddad N, Moore R, Heathcote D, Mounayar M, Azzi J, Mfarrej B, Batal I, Ting C, Atkinson M, Sayegh MH, Ashton-Rickardt PG, Abdi R. The novel role of SERPINB9 in cytotoxic protection of human mesenchymal stem cells. THE JOURNAL OF IMMUNOLOGY 2011; 187:2252-60. [PMID: 21795594 DOI: 10.4049/jimmunol.1003981] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Clinical trials using allogeneic mesenchymal stem cells (MSCs) are ongoing for the purpose of providing therapeutic benefit for a variety of human disorders. Pertinent to their clinical use are the accessibility to sufficient quantities of these cells allowing for repetitive administration, as well as a better understanding of the specific mechanisms by which allogeneic MSCs evade host immune responses that in turn influence their life span following administration. In this report, we sought to characterize and compare human peripheral blood MSCs (hPB-MSCs) with bone marrow-derived MSCs. hPB-MSCs met the established criteria to characterize this cellular lineage, including capacity for self-renewal, differentiation into tissues of mesodermal origin, and expression of phenotypic surface markers. In addition, hPB-MSCs suppressed alloreactive proliferation as well as the production of proinflammatory cytokines. Examination of the mechanisms by which allogeneic MSCs evade the host immune response, which is crucial for their therapeutic use, demonstrated that constitutive expression of serine protease inhibitor 9 (PI-9) on hPB-MSCs and bone marrow-derived MSCs is a major defense mechanism against granzyme B-mediated destruction by NK cells. Similarly, MSCs treated with small interfering RNA for PI-9 increased MSC cellular death, whereas expression of transgenic PI-9 following retroviral transduction protected MSCs. These data significantly advance our understanding of the immunomodulatory role for hPB-MSCs as well as the mechanisms by which they evade host immune responses. These findings contribute to the development of MSC-based therapies for diseases.
Collapse
Affiliation(s)
- Najib El Haddad
- Transplantation Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Aghajanova L, Horcajadas JA, Esteban FJ, Giudice LC. The bone marrow-derived human mesenchymal stem cell: potential progenitor of the endometrial stromal fibroblast. Biol Reprod 2010; 82:1076-87. [PMID: 20147733 DOI: 10.1095/biolreprod.109.082867] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The cellular sources that contribute to the renewal of human endometrium are largely unknown. It has been suggested that endometrial stem cells originate from bone marrow-derived mesenchymal stem cells (MSC), with subsequent development into endometrial stromal fibroblasts (hESF). We hypothesized that if bone marrow-derived MSC contribute to endometrial regeneration and are progenitors of hESF, their treatment with agents known to regulate hESF differentiation could promote their differentiation down the stromal fibroblast lineage. To this end, we treated bone marrow-derived MSC with estradiol and progesterone, bone morphogenetic protein 2 (BMP2), and activators of the protein kinase A (PKA) pathway and investigated specific markers of hESF differentiation (decidualization). Furthermore, we investigated the transcriptome of these cells in response to cAMP and compared this to the transcriptome of hESF decidualized in response to activation of the PKA pathway. The data support the idea that MSC can be differentiated down the hESF pathway, as evidenced by changes in cell shape and common expression of decidual markers and other genes important in hESF differentiation and function, and that bone marrow-derived MSC may be a source of endometrial stem/progenitor cells. In addition, we identified MSC-specific markers that distinguish them from other fibroblasts and, in particular, from hESF, which is of biologic relevance and practical value to the field of endometrial stem cell research.
Collapse
Affiliation(s)
- Lusine Aghajanova
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California-San Francisco, 505 Parnassus Ave., San Francisco, CA 94143-0132, USA
| | | | | | | |
Collapse
|
31
|
Kuhn NZ, Tuan RS. Regulation of stemness and stem cell niche of mesenchymal stem cells: implications in tumorigenesis and metastasis. J Cell Physiol 2009; 222:268-77. [PMID: 19847802 DOI: 10.1002/jcp.21940] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Human mesenchymal stem cells (MSCs) derived from adult tissues have been considered a candidate cell type for cell-based tissue engineering and regenerative medicine. These multipotent cells have the ability to differentiate along several mesenchymal lineages and possibly along non-mesenchymal lineages. MSCs possess considerable immunosuppressive properties that can influence the surrounding tissue positively during regeneration, but perhaps negatively towards the pathogenesis of cancer and metastasis. The balance between the naïve stem state and differentiation is highly dependent on the stem cell niche. Identification of stem cell niche components has helped to elucidate the mechanisms of stem cell maintenance and differentiation. Ultimately, the fate of stem cells is dictated by their microenvironment. In this review, we describe the identification and characterization of bone marrow-derived MSCs, the properties of the bone marrow stem cell niche, and the possibility and likelihood of MSC involvement in cancer progression and metastasis.
Collapse
Affiliation(s)
- Nastaran Z Kuhn
- Cartilage Biology and Orthopaedics Branch, National Institute of Arthritis, and Musculoskeletal and Skin Diseases, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA
| | | |
Collapse
|