1
|
Wang Z, Wang T, Yang Y, Yang Y, Mi X, Wang J. Precise Two-Dimensional Tilt Measurement Sensor with Double-Cylindrical Mirror Structure and Modified Mean-Shift Algorithm for a Confocal Microscopy System. SENSORS (BASEL, SWITZERLAND) 2022; 22:6794. [PMID: 36146144 PMCID: PMC9501962 DOI: 10.3390/s22186794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/27/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
To improve the accuracy of three-dimensional (3D) surface contour measurements of freeform optics, a two-dimensional (2D) tilt measurement sensor for confocal microscopy (CM) systems is proposed based on a double-cylindrical mirror structure. First, the proposed system is accurately modeled. Second, we introduce a modified mean-shift-based peak-extraction algorithm with a novel kernel function (MSN) because the reflectivity of the measured object and fluctuation of the light source affect the measurement accuracy. Third, a partition fitting (PF) strategy is proposed to reduce the fitting error and improve the measurement accuracy. Simulations and experiments reveal that the robustness, speed, and angular prediction accuracy of the system effectively improved as a function of MSN and PF. The developed sensor can measure the 2D tilt, where each tilt is a composition of two separate dimensions, and the mean prediction errors in the 2D plane from -10°-+10° are 0.0134° (0.067% full scale (F.S)) and 0.0142° (0.071% F.S). The sensor enables the optical probe of a traditional CM to obtain accurate and simultaneous estimates of the 2D inclination angle and spatial position coordinates of the measured surface. The proposed sensor has potential in 3D topographic reconstruction and dynamic sampling rate optimization for 3D contour detection.
Collapse
Affiliation(s)
- Zhiyi Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tingyu Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqiang Yang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yukai Yang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaotao Mi
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Jianli Wang
- Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Borgarelli C, Klingl YE, Escamilla-Ayala A, Munck S, Van Den Bosch L, De Borggraeve WM, Ismalaj E. Lighting Up the Plasma Membrane: Development and Applications of Fluorescent Ligands for Transmembrane Proteins. Chemistry 2021; 27:8605-8641. [PMID: 33733502 DOI: 10.1002/chem.202100296] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Indexed: 12/16/2022]
Abstract
Despite the fact that transmembrane proteins represent the main therapeutic targets for decades, complete and in-depth knowledge about their biochemical and pharmacological profiling is not fully available. In this regard, target-tailored small-molecule fluorescent ligands are a viable approach to fill in the missing pieces of the puzzle. Such tools, coupled with the ability of high-precision optical techniques to image with an unprecedented resolution at a single-molecule level, helped unraveling many of the conundrums related to plasma proteins' life-cycle and druggability. Herein, we review the recent progress made during the last two decades in fluorescent ligand design and potential applications in fluorescence microscopy of voltage-gated ion channels, ligand-gated ion channels and G-coupled protein receptors.
Collapse
Affiliation(s)
- Carlotta Borgarelli
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| | - Yvonne E Klingl
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain &, Disease Research, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Abril Escamilla-Ayala
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5 - box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Sebastian Munck
- Center for Brain & Disease Research, & VIB BioImaging Core, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Department of Neurosciences, Leuven Brain Institute, KU Leuven, Campus Gasthuisberg O&N5 - box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium.,Laboratory of Neurobiology, VIB, Center for Brain &, Disease Research, VIB-KU Leuven Campus Gasthuisberg O&N5 -, box 602 Herestraat 49, 3000, Leuven, Belgium
| | - Wim M De Borggraeve
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| | - Ermal Ismalaj
- Department of Chemistry, Molecular Design and Synthesis, KU Leuven Campus Arenberg Celestijnenlaan 200F -, box 2404, 3001, Leuven, Belgium
| |
Collapse
|
3
|
Abstract
A multitude of physiological processes regulated by G protein-coupled receptors (GPCRs) signaling are accomplished by the participation of active rearrangements of the cytoskeleton. In general, it is common that a cross talk occurs among networks of microfilaments, microtubules, and intermediate filaments in order to reach specific cell responses. In particular, actin-cytoskeleton dynamics regulate processes such as cell shape, cell division, cell motility, and cell polarization, among others. This chapter describes the current knowledge about the regulation of actin-cytoskeleton dynamic by diverse GPCR signaling pathways, and also includes some protocols combining immunofluorescence and confocal microscopy for the visualization of the different rearrangements of the actin-cytoskeleton. We report how both the S1P-GPCR/G12/13/Rho/ROCK and glucagon-GPCR/Gs/cAMP axes induce differential actin-cytoskeleton rearrangements in epithelial cells. We also show that specific actin-binding molecules, like phalloidin and LifeAct, are very useful to analyze F-actin reorganization by confocal microscopy, and also that both molecules show similar results in fixed cells, whereas the anti-actin antibody is useful to detect both the G- and F-actin, as well as their compartmentalization. Thus, it is highly recommended to utilize different approaches to investigate the regulation of actin dynamics by GPCR signaling, with the aim to get a better picture of the phenomenon under study.
Collapse
|
4
|
Castillo-Badillo JA, Sánchez-Reyes OB, Alfonzo-Méndez MA, Romero-Ávila MT, Reyes-Cruz G, García-Sáinz JA. α1B-adrenergic receptors differentially associate with Rab proteins during homologous and heterologous desensitization. PLoS One 2015; 10:e0121165. [PMID: 25799564 PMCID: PMC4370394 DOI: 10.1371/journal.pone.0121165] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Accepted: 01/28/2015] [Indexed: 11/24/2022] Open
Abstract
Internalization of G protein-coupled receptors can be triggered by agonists or by other stimuli. The process begins within seconds of cell activation and contributes to receptor desensitization. The Rab GTPase family controls endocytosis, vesicular trafficking, and endosomal fusion. Among their remarkable properties is the differential distribution of its members on the surface of various organelles. In the endocytic pathway, Rab 5 controls traffic from the plasma membrane to early endosomes, whereas Rab 4 and Rab 11 regulate rapid and slow recycling from early endosomes to the plasma membrane, respectively. Moreover, Rab 7 and Rab 9 regulate the traffic from late endosomes to lysosomes and recycling to the trans-Golgi. We explore the possibility that α1B-adrenergic receptor internalization induced by agonists (homologous) and by unrelated stimuli (heterologous) could involve different Rab proteins. This possibility was explored by Fluorescence Resonance Energy Transfer (FRET) using cells coexpressing α1B-adrenergic receptors tagged with the red fluorescent protein, DsRed, and different Rab proteins tagged with the green fluorescent protein. It was observed that when α1B-adrenergic receptors were stimulated with noradrenaline, the receptors interacted with proteins present in early endosomes, such as the early endosomes antigen 1, Rab 5, Rab 4, and Rab 11 but not with late endosome markers, such as Rab 9 and Rab 7. In contrast, sphingosine 1-phosphate stimulation induced rapid and transient α1B-adrenergic receptor interaction of relatively small magnitude with Rab 5 and a more pronounced and sustained one with Rab 9; interaction was also observed with Rab 7. Moreover, the GTPase activity of the Rab proteins appears to be required because no FRET was observed when dominant-negative Rab mutants were employed. These data indicate that α1B-adrenergic receptors are directed to different endocytic vesicles depending on the desensitization type (homologous vs. heterologous).
Collapse
Affiliation(s)
- Jean A. Castillo-Badillo
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - Omar B. Sánchez-Reyes
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - Marco A. Alfonzo-Méndez
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - M. Teresa Romero-Ávila
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
| | - Guadalupe Reyes-Cruz
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional-CINVESTAV, Av. Instituto Politécnico Nacional No. 2508, Col. San Pedro Zacatenco, CP 07360, México, D.F., Mexico
| | - J. Adolfo García-Sáinz
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ap. Postal 70–248, México D.F. 04510, Mexico
- * E-mail:
| |
Collapse
|