1
|
Wu THY, Brown HA, Church HJ, Kershaw CJ, Hutton R, Egerton C, Cooper J, Tylee K, Cohen RN, Gokhale D, Ram D, Morton G, Henderson M, Bigger BW, Jones SA. Improving newborn screening test performance for metachromatic leukodystrophy: Recommendation from a pre-pilot study that identified a late-infantile case for treatment. Mol Genet Metab 2024; 142:108349. [PMID: 38458124 DOI: 10.1016/j.ymgme.2024.108349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/15/2024] [Accepted: 02/18/2024] [Indexed: 03/10/2024]
Abstract
Metachromatic leukodystrophy (MLD) is a devastating rare neurodegenerative disease. Typically, loss of motor and cognitive skills precedes early death. The disease is characterised by deficient lysosomal arylsulphatase A (ARSA) activity and an accumulation of undegraded sulphatide due to pathogenic variants in the ARSA gene. Atidarsagene autotemcel (arsa-cel), an ex vivo haematopoietic stem cell gene therapy was approved for use in the UK in 2021 to treat early-onset forms of pre- or early-symptomatic MLD. Optimal outcomes require early diagnosis, but in the absence of family history this is difficult to achieve without newborn screening (NBS). A pre-pilot MLD NBS study was conducted as a feasibility study in Manchester UK using a two-tiered screening test algorithm. Pre-established cutoff values (COV) for the first-tier C16:0 sulphatide (C16:0-S) and the second-tier ARSA tests were evaluated. Before the pre-pilot study, initial test validation using non‑neonatal diagnostic bloodspots demonstrated ARSA pseudodeficiency status was associated with normal C16:0-S results for age (n = 43) and hence not expected to cause false positive results in this first-tier test. Instability of ARSA in bloodspot required transfer of NBS bloodspots from ambient temperature to -20°C storage within 7-8 days after heel prick, the earliest possible in this UK pre-pilot study. Eleven of 3687 de-identified NBS samples in the pre-pilot were positive for C16:0-S based on the pre-established COV of ≥170 nmol/l or ≥ 1.8 multiples of median (MoM). All 11 samples were subsequently tested negative determined by the ARSA COV of <20% mean of negative controls. However, two of 20 NBS samples from MLD patients would be missed by this C16:0-S COV. A further suspected false negative case that displayed 4% mean ARSA activity by single ARSA analysis for the initial test validation was confirmed by genotyping of this NBS bloodspot, a severe late infantile MLD phenotype was predicted. This led to urgent assessment of this child by authority approval and timely commencement of arsa-cel gene therapy at 11 months old. Secondary C16:0-S analysis of this NBS bloodspot was 150 nmol/l or 1.67 MoM. This was the lowest result reported thus far, a new COV of 1.65 MoM is recommended for future pilot studies. Furthermore, preliminary data of this study showed C16:1-OH sulphatide is more specific for MLD than C16:0-S. In conclusion, this pre-pilot study adds to the international evidence that recommends newborn screening for MLD, making it possible for patients to benefit fully from treatment through early diagnosis.
Collapse
Affiliation(s)
- Teresa H Y Wu
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK.
| | - Heather A Brown
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Heather J Church
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Christopher J Kershaw
- North-West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Rebekah Hutton
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Christine Egerton
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - James Cooper
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Karen Tylee
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Rebecca N Cohen
- North-West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - David Gokhale
- North-West Genomic Laboratory Hub, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| | - Dipak Ram
- Department of Paediatric Neurology, Royal Manchester Children's Hospital, Oxford Road, Manchester M13 9WL, UK
| | - Georgina Morton
- ArchAngel MLD Trust, 506 Betula House, North Wharf Road, London W2 1DT, UK
| | - Michael Henderson
- Specialist Laboratory Medicine, Leeds Teaching Hospitals Trust, Leeds LS9 7TF, UK
| | - Brian W Bigger
- Stem Cell & Neurotherapies, Faculty of Biology Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Centre for Regenerative Medicine, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Simon A Jones
- Willink Biochemical Genetics Unit, Manchester Centre for Genomic Medicine, Manchester University NHS Foundation Trust, Oxford Road, Manchester M13 9WL, UK
| |
Collapse
|
2
|
Barbosa-Gouveia S, Vázquez-Mosquera ME, González-Vioque E, Álvarez JV, Chans R, Laranjeira F, Martins E, Ferreira AC, Avila-Alvarez A, Couce ML. Utility of Gene Panels for the Diagnosis of Inborn Errors of Metabolism in a Metabolic Reference Center. Genes (Basel) 2021; 12:1262. [PMID: 34440436 PMCID: PMC8391361 DOI: 10.3390/genes12081262] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/04/2021] [Accepted: 08/16/2021] [Indexed: 11/28/2022] Open
Abstract
Next-generation sequencing (NGS) technologies have been proposed as a first-line test for the diagnosis of inborn errors of metabolism (IEM), a group of genetically heterogeneous disorders with overlapping or nonspecific phenotypes. Over a 3-year period, we prospectively analyzed 311 pediatric patients with a suspected IEM using four targeted gene panels. The rate of positive diagnosis was 61.86% for intermediary metabolism defects, 32.84% for complex molecular defects, 19% for hypoglycemic/hyperglycemic events, and 17% for mitochondrial diseases, and a conclusive molecular diagnosis was established in 2-4 weeks. Forty-one patients for whom negative results were obtained with the mitochondrial diseases panel underwent subsequent analyses using the NeuroSeq panel, which groups all genes from the individual panels together with genes associated with neurological disorders (1870 genes in total). This achieved a diagnostic rate of 32%. We next evaluated the utility of a tool, Phenomizer, for differential diagnosis, and established a correlation between phenotype and molecular findings in 39.3% of patients. Finally, we evaluated the mutational architecture of the genes analyzed by determining z-scores, loss-of-function observed/expected upper bound fraction (LOEUF), and haploinsufficiency (HI) scores. In summary, targeted gene panels for specific groups of IEMs enabled rapid and effective diagnosis, which is critical for the therapeutic management of IEM patients.
Collapse
Affiliation(s)
- Sofia Barbosa-Gouveia
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Paediatrics, IDIS-Health Research Institute of Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), European Reference Network for Hereditary Metabolic Disorders (MetabERN), Santiago de Compostela University Clinical Hospital, 15704 Santiago de Compostela, Spain; (S.B.-G.); (M.E.V.-M.); (J.V.Á.); (R.C.)
| | - María E. Vázquez-Mosquera
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Paediatrics, IDIS-Health Research Institute of Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), European Reference Network for Hereditary Metabolic Disorders (MetabERN), Santiago de Compostela University Clinical Hospital, 15704 Santiago de Compostela, Spain; (S.B.-G.); (M.E.V.-M.); (J.V.Á.); (R.C.)
| | - Emiliano González-Vioque
- Department of Clinical Biochemistry, Puerta de Hierro-Majadahonda University Hospital, 28222 Majadahonda, Spain;
| | - José V. Álvarez
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Paediatrics, IDIS-Health Research Institute of Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), European Reference Network for Hereditary Metabolic Disorders (MetabERN), Santiago de Compostela University Clinical Hospital, 15704 Santiago de Compostela, Spain; (S.B.-G.); (M.E.V.-M.); (J.V.Á.); (R.C.)
| | - Roi Chans
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Paediatrics, IDIS-Health Research Institute of Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), European Reference Network for Hereditary Metabolic Disorders (MetabERN), Santiago de Compostela University Clinical Hospital, 15704 Santiago de Compostela, Spain; (S.B.-G.); (M.E.V.-M.); (J.V.Á.); (R.C.)
| | - Francisco Laranjeira
- Biochemical Genetics Unit, Centro de Genética Médica Doutor Jacinto Magalhães, 4050-466 Porto, Portugal;
| | - Esmeralda Martins
- Centro Materno-Infantil do Norte, Centro Hospitalar Universitário do Porto (CHUP), Coordinator of the Centro de Referência de Doenças Hereditárias do Metabolismo do CHUP, 4050-466 Porto, Portugal;
| | - Ana Cristina Ferreira
- Hospital D. Estefânia, Centro Hospitalar de Lisboa Central (CHLC), Coordinator of the Centro de Referência de Doenças Hereditárias do Metabolismo do CHLC, 1169-050 Lisboa, Portugal;
| | - Alejandro Avila-Alvarez
- Neonatology Unit, Pediatrics Department, Complexo Hospitalario Universitario de A Coruña, SERGAS, 15006 A Coruña, Spain;
| | - María L. Couce
- Unit of Diagnosis and Treatment of Congenital Metabolic Diseases, Department of Paediatrics, IDIS-Health Research Institute of Santiago de Compostela, Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), European Reference Network for Hereditary Metabolic Disorders (MetabERN), Santiago de Compostela University Clinical Hospital, 15704 Santiago de Compostela, Spain; (S.B.-G.); (M.E.V.-M.); (J.V.Á.); (R.C.)
| |
Collapse
|
3
|
Advances in Sphingolipidoses: CRISPR-Cas9 Editing as an Option for Modelling and Therapy. Int J Mol Sci 2019; 20:ijms20235897. [PMID: 31771289 PMCID: PMC6928934 DOI: 10.3390/ijms20235897] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 01/04/2023] Open
Abstract
Sphingolipidoses are inherited genetic diseases characterized by the accumulation of glycosphingolipids. Sphingolipidoses (SP), which usually involve the loss of sphingolipid hydrolase function, are of lysosomal origin, and represent an important group of rare diseases among lysosomal storage disorders. Initial treatments consisted of enzyme replacement therapy, but, in recent decades, various therapeutic approaches have been developed. However, these commonly used treatments for SP fail to be fully effective and do not penetrate the blood-brain barrier. New approaches, such as genome editing, have great potential for both the treatment and study of sphingolipidoses. Here, we review the most recent advances in the treatment and modelling of SP through the application of CRISPR-Cas9 genome editing. CRISPR-Cas9 is currently the most widely used method for genome editing. This technique is versatile; it can be used for altering the regulation of genes involved in sphingolipid degradation and synthesis pathways, interrogating gene function, generating knock out models, or knocking in mutations. CRISPR-Cas9 genome editing is being used as an approach to disease treatment, but more frequently it is utilized to create models of disease. New CRISPR-Cas9-based tools of gene editing with diminished off-targeting effects are evolving and seem to be more promising for the correction of individual mutations. Emerging Prime results and CRISPR-Cas9 difficulties are also discussed.
Collapse
|
4
|
Abstract
Introduction: Lysosomal storage disease is caused by the deficiency of a single hydrolase (lysosomal enzymes). GM2 gangliosidoses are autosomal recessive disorders caused by deficiency of β-hexosaminidase and Tay-Sachs disease (TSD) is one of its three forms.Objective: To perform a review of the state of the art on TSD describing its definition, epidemiology, etiology, physiopathology, clinical manifestations and news in diagnosis and treatment.Materials and methods: A literature search was carried out in PubMed using the MeSH terms “Tay-Sachs Disease”.Results: 1 233 results were retrieved in total, of which 53 articles were selected. TSD is caused by the deficiency of the lysosomal enzyme β-hexosaminidase A (HexA), and is characterized by neurodevelopmental regression, hypotonia, hyperacusis and cherry-red spots in the macula. Research on molecular pathogenesis and the development of possible treatments has been limited, consequently there is no treatment established to date.Conclusion: TSD is an autosomal recessive neurodegenerative disorder. Death usually occurs before the age of five. More research and studies on this type of gangliosidosis are needed in order to find an adequate treatment.
Collapse
|