1
|
Tachizaki M, Kobori Y, Kawaguchi S, Seya K, Tanaka H, Imaizumi T. Tripartite motif 22 (TRIM22) downregulates TLR3-induced CCL5 expression in human renal proximal tubular epithelial cells. Mol Biol Rep 2025; 52:306. [PMID: 40080304 DOI: 10.1007/s11033-025-10409-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 03/04/2025] [Indexed: 03/15/2025]
Abstract
BACKGROUND Tripartite motif 22 (TRIM22) plays a key role in viral defense by suppressing replication. Kidney transplant recipients and patients with chronic kidney disease are compromised hosts and susceptible to viral infections. Although several viruses that infect the renal tubules have been identified, the function and role of TRIM22 in viral infections of the renal tubules remain unknown. Tubular epithelial cells express Toll-like receptors (TLRs), which are pattern recognition receptors. Notably, TLR3 recognizes viral RNA and induces the release of type I interferons (IFNs) and subsequently several proinflammatory chemokines, such as IFN-β and C-C motif chemokine ligand 5 (CCL5). This study investigated the role of TRIM22 in TLR3-induced CCL5 expression in cultured human renal proximal tubular epithelial cells (hRPTECs). METHODS AND RESULTS hRPTECs were treated with polyinosinic-polycytidylic acid (poly IC), a ligand for TLR3. Reverse transcription-quantitative polymerase chain reaction was used to analyze mRNA expression, and western blotting and enzyme-linked immunosorbent assays were used to analyze protein expression. Poly IC-induced TRIM22 mRNA and protein expression increased in concentration- and time-dependent manners. Cells were transfected with small interfering RNA against IFN-β or TRIM22 to knock down their respective expression. Knockdown of IFN-β attenuated poly IC-induced TRIM22 mRNA and protein expression. Whereas TRIM22 knockdown upregulated poly IC-induced CCL5 mRNA and protein expression. CONCLUSION Our results revealed the TLR3-IFN-β-TRIM22 pathways in hRPTECs. TRIM22 suppressed TLR3-induced CCL5 expression, suggesting that TRIM22 suppresses viral infection-induced excessive inflammation in addition to direct antiviral defense.
Collapse
Affiliation(s)
- Mayuki Tachizaki
- Department of Vascular and Inflammatory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan.
| | - Yuri Kobori
- Department of Respiratory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Shogo Kawaguchi
- Department of Vascular and Inflammatory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Kazuhiko Seya
- Department of Vascular and Inflammatory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| | - Hiroshi Tanaka
- Department of School Health Science, Hirosaki University Faculty of Education, 1 Bunkyo-cho, Hirosaki, Aomori, 036-8560, Japan
- Department of Nursing, Faculty of Health and Medical Care, Hachinohe Gakuin University, 13-98 Mihono, Hachinohe, Aomori, 031-8588, Japan
| | - Tadaatsu Imaizumi
- Department of Vascular and Inflammatory Medicine, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori, 036-8562, Japan
| |
Collapse
|
2
|
Tavakoli R, Rahimi P, Fateh A, Hamidi-Fard M, Eaybpoosh S, Bahramali G, Sadeghi SA, Doroud D, Aghasadeghi M. Exploring the impression of TRIM25 gene expression on COVID-19 severity and SARS-CoV-2 viral replication. J Infect Public Health 2024; 17:102489. [PMID: 38964175 DOI: 10.1016/j.jiph.2024.102489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND There are numerous human genes associated with viral infections, and their identification in specific populations can provide suitable therapeutic targets for modulating the host immune system response and better understanding the viral pathogenic mechanisms. Many antiviral signaling pathways, including Type I interferon and NF-κB, are regulated by TRIM proteins. Therefore, the identification of TRIM proteins involved in COVID-19 infection can play a significant role in understanding the innate immune response to this virus. METHODS In this study, the expression of TRIM25 gene was evaluated in a blood sample of 330 patients admitted to the hospital (142 patients with severe disease and 188 patients with mild disease) as well as in 160 healthy individuals. The relationship between its expression and the severity of COVID-19 disease was assessed and compared among the study groups by quantitative Real-time PCR technique. The statistical analysis of the results demonstrated a significant reduction in the expression of TRIM25 in the group of patients with severe infection compared to those with mild infection. Furthermore, the impact of increased expression of TRIM25 gene in HEK-293 T cell culture was investigated on the replication of attenuated SARS-CoV-2 virus. RESULTS The results of Real-time PCR, Western blot for the viral nucleocapsid gene of virus, and CCID50 test indicated a decrease in virus replication in these cells. The findings of this research indicated that the reduced expression of the TRIM25 gene was associated with increased disease severity of COVID-19 in individuals. Additionally, the results suggested the overexpression of TRIM25 gene can impress the replication of attenuated SARS-CoV-2 and the induction of beta-interferon. CONCLUSION TRIM25 plays a critical role in controlling viral replication through its direct interaction with the virus and its involvement in inducing interferon during the early stages of infection. This makes TRIM25 a promising target for potential therapeutic interventions.
Collapse
Affiliation(s)
- Rezvan Tavakoli
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Pooneh Rahimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | | | - Sana Eaybpoosh
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Golnaz Bahramali
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Amir Sadeghi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Delaram Doroud
- Department of Production, Research and Production Complex, Pasteur Institute of Iran, Tehran, Iran
| | | |
Collapse
|
3
|
Hernández-Sarmiento LJ, Tamayo-Molina YS, Valdés-López JF, Urcuqui-Inchima S. Interleukin 27, Similar to Interferons, Modulates Gene Expression of Tripartite Motif (TRIM) Family Members and Interferes with Mayaro Virus Replication in Human Macrophages. Viruses 2024; 16:996. [PMID: 38932287 PMCID: PMC11209095 DOI: 10.3390/v16060996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND The Tripartite motif (TRIM) family includes more than 80 distinct human genes. Their function has been implicated in regulating important cellular processes, including intracellular signaling, transcription, autophagy, and innate immunity. During viral infections, macrophages are key components of innate immunity that produce interferons (IFNs) and IL27. We recently published that IL27 and IFNs induce transcriptional changes in various genes, including those involved in JAK-STAT signaling. Furthermore, IL27 and IFNs share proinflammatory and antiviral pathways in monocyte-derived macrophages (MDMs), resulting in both common and unique expression of inflammatory factors and IFN-stimulated genes (ISGs) encoding antiviral proteins. Interestingly, many TRIM proteins have been recognized as ISGs in recent years. Although it is already very well described that TRIM expression is induced by IFNs, it is not fully understood whether TRIM genes are induced in macrophages by IL27. Therefore, in this study, we examined the effect of stimulation with IL27 and type I, II, and III IFNs on the mRNA expression profiles of TRIM genes in MDMs. METHODS We used bulk RNA-seq to examine the TRIM expression profile of MDMs treated with IFNs or IL27. Initially, we characterized the expression patterns of different TRIM subfamilies using a heatmap. Subsequently, a volcano plot was employed to identify commonly differentially expressed TRIM genes. Additionally, we conducted gene ontology analysis with ClueGO to explore the biological processes of the regulated TRIMs, created a gene-gene interaction network using GeneMANIA, and examined protein-protein interactions with the STRING database. Finally, RNA-seq data was validated using RT-qPCR. Furthermore, the effect of IL27 on Mayaro virus replication was also evaluated. RESULTS We found that IL27, similar to IFNs, upregulates several TRIM genes' expression in human macrophages. Specifically, we identified three common TRIM genes (TRIM19, 21, and 22) induced by IL27 and all types of human IFNs. Additionally, we performed the first report of transcriptional regulation of TRIM19, 21, 22, and 69 genes in response to IL27. The TRIMs involved a broad range of biological processes, including defense response to viruses, viral life cycle regulation, and negative regulation of viral processes. In addition, we observed a decrease in Mayaro virus replication in MDMs previously treated with IL27. CONCLUSIONS Our results show that IL27, like IFNs, modulates the transcriptional expression of different TRIM-family members involved in the induction of innate immunity and an antiviral response. In addition, the functional analysis demonstrated that, like IFN, IL27 reduced Mayaro virus replication in MDMs. This implies that IL27 and IFNs share many similarities at a functional level. Moreover, identifying distinct TRIM groups and their differential expressions in response to IL27 provides new insights into the regulatory mechanisms underlying the antiviral response in human macrophages.
Collapse
Affiliation(s)
| | | | | | - Silvio Urcuqui-Inchima
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia UdeA, Calle 70 No. 52-21, Medellín 050001, Colombia; (L.J.H.-S.); (Y.S.T.-M.); (J.F.V.-L.)
| |
Collapse
|
4
|
Eybpoosh S, Ahmadi SAY. Pleiotropic Bias and Study Design Considerations in Genetic Association Studies. Med J Islam Repub Iran 2024; 38:51. [PMID: 39399603 PMCID: PMC11469697 DOI: 10.47176/mjiri.38.51] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 10/15/2024] Open
Abstract
Background Case-control studies are efficient designs for investigating gene-disease associations. A discovery of genome-wide association studies (GWAS) is that many genetic variants are associated with multiple health outcomes and diseases, a phenomenon known as pleiotropy. We aimed to discuss about pleiotropic bias in genetic association studies. Methods The opinions of the researchers on the basis of the literature were presented as a critical review. Results Pleiotropic effect can bias the results of gene-disease association studies if they use individuals with pre-existing diseases as the control group, while the disease in cases and controls have shared genetic markers. The idea supports the conclusion that when the exposure of interest in a case-control study is a genetic marker, the use of controls from diseased cases that share similar genetic markers may increase the risk of pleiotropic effect. However, not manifesting the disease symptoms among controls at the time of recruitment does not guarantee that the individual will not develop the disease of interest in the future. Age-matched disease-free controls may be a better solution in similar situations. Different analytical techniques are also available that can be used to identify pleiotropic effects. Known pleiotropic effects can be searched from various online databases. Conclusion Pleiotropic effects may result in bias in genetic association studies. Suggestions consist of selecting healthy yet age-matched controls and considering diseases with independent genetic architecture. Checking the related databases is recommended before designing a study.
Collapse
Affiliation(s)
- Sana Eybpoosh
- Research Centre for emerging and reemerging infectious diseases, Department of Epidemiology and Biostatistics, Pasteur institute of Iran, Tehran, Iran
| | - Seyyed Amir Yasin Ahmadi
- Preventive Medicine and Public Health Research Center, Psychosocial Health Research Institute, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Moghaddam N, Goodarzi MT, Moghaddam S, Sakhaee F, Ahmadi I, Anvari E, Fateh A. Relationship Between Human FCγ RIIA rs1801274 G Allele and Risk of Death Among Different SARS-CoV-2 Variants. Viral Immunol 2023; 36:678-685. [PMID: 38029355 DOI: 10.1089/vim.2023.0091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), the illness caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in late 2019 and spread very quickly across the world. Different responses to infections have been related to fragment crystallizable gamma-receptor II alpha (FcγRIIA) polymorphisms. The purpose of this investigation was to determine if FCγRIIA rs1801274 polymorphism was related to COVID-19 mortality among different variants of SARS-CoV-2. The FCγRIIA rs1801274 polymorphism was genotyped using the polymerase chain reaction-restriction fragment length polymorphism technique in 1,734 recovered and 1,450 deceased patients. Deceased patients had significantly higher minor allele frequency of the FCγRIIA rs1801274 G allele than in the recovered cases. The COVID-19 mortality was associated with FCγRIIA rs1801274 GG and AG genotypes in the Delta variant and with FCγRIIA rs1801274 GG genotypes in the Alpha and Omicron BA.5 variants. The reverse transcription-quantitative polymerase chain reaction Ct values revealed statistically significant differences between individuals with a G allele and those with an A allele. In conclusion, among the several SARS-CoV-2 variants, there may be a correlation between the mortality rate of COVID-19 and the G allele of FCγRIIA rs1801274. To confirm our findings, thorough research is still required.
Collapse
Affiliation(s)
- Nazanin Moghaddam
- Department of Biochemistry, Shahrood Branch, Islamic Azad University, Shahrood, Iran
| | | | - Sina Moghaddam
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Sakhaee
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
| | - Iraj Ahmadi
- Department of Physiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Enayat Anvari
- Clinical Research Development Unit, Shahid Mostafa Khomeini Hospital, Ilam University of Medical Science, Ilam, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Tavakoli R, Rahimi P, Hamidi-Fard M, Eybpoosh S, Doroud D, Ahmadi I, Anvari E, Aghasadeghi M, Fateh A. Expression of TRIM56 gene in SARS-CoV-2 variants and its relationship with progression of COVID-19. Future Virol 2023; 18:563-574. [PMID: 38051999 PMCID: PMC10348059 DOI: 10.2217/fvl-2022-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 06/19/2023] [Indexed: 10/13/2023]
Abstract
Aim The present study aimed to determine a correlation between differential TRIM56 expression levels and severe infections of COVID-19 between the Alpha, Delta and Omicron BA.5 variants. Materials & methods This study was performed on 330 COVID-19 patients, including 142 with severe and 188 with mild infections, as well as 160 healthy controls. The levels of TRIM56 gene expression were determined using a qPCR. Results TRIM56 gene showed significantly lower mRNA expression in the severe and mild groups compared with healthy individuals. Our finding indicated the high and low reduction of TRIM56 mRNA expression in Delta and Omicron BA.5 variant, respectively. Conclusion Further research is needed to characterize the impact of TRIM proteins on the severity of COVID-19.
Collapse
Affiliation(s)
- Rezvan Tavakoli
- Hepatitis & AIDS Department, Pasteur Institute of Iran, Tehran, Iran
| | - Pooneh Rahimi
- Hepatitis & AIDS Department, Pasteur Institute of Iran, Tehran, Iran
- Viral Vaccine Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mojtaba Hamidi-Fard
- Hepatitis & AIDS Department, Pasteur Institute of Iran, Tehran, Iran
- Viral Vaccine Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sana Eybpoosh
- Department of Epidemiology & Biostatistics, Research Centre for Emerging & Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran, Iran
| | - Delaram Doroud
- Quality Control Department, Production & Research Complex, Pasteur Institute of Iran, Tehran, Iran
| | - Iraj Ahmadi
- Department of Physiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Enayat Anvari
- Department of Physiology, School of Medicine, Ilam University of Medical Science, Ilam, Iran
| | - Mohammadreza Aghasadeghi
- Hepatitis & AIDS Department, Pasteur Institute of Iran, Tehran, Iran
- Viral Vaccine Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology & Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|