C-Peptide effects on renal physiology and diabetes.
EXPERIMENTAL DIABETES RESEARCH 2008;
2008:281536. [PMID:
18509500 PMCID:
PMC2396455 DOI:
10.1155/2008/281536]
[Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 04/10/2008] [Indexed: 02/07/2023]
Abstract
The C-peptide of proinsulin is important for the biosynthesis of insulin and has for a long time been considered to be biologically inert. Animal studies have shown that some of the renal effects of the C-peptide may in part be explained by its ability to stimulate the Na,K-ATPase activity. Precisely, the C-peptide reduces diabetes-induced glomerular hyperfiltration both in animals and humans, therefore, resulting in regression of fibrosis. The tubular function is also concerned as diabetic animals supplemented with C-peptide exhibit better renal function resulting in reduced urinary sodium waste and protein excretion together with the reduction of the diabetes-induced glomerular hyperfiltration. The tubular effectors of C-peptide were considered to be tubule transporters, but recent studies have shown that biochemical pathways involving cellular kinases and inflammatory pathways may also be important. The matter theory concerning the C-peptide effects is a metabolic one involving the effects of the C-peptide on lipidic metabolic status.This review concentrates on the most convincing data which indicate that the C-peptide is a biologically active hormone for renal physiology.
Collapse