1
|
Wang Y, Cao X, Ma J, Liu S, Jin X, Liu B. Unveiling the Longevity Potential of Natural Phytochemicals: A Comprehensive Review of Active Ingredients in Dietary Plants and Herbs. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 39480905 DOI: 10.1021/acs.jafc.4c07756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Ancient humans used dietary plants and herbs to treat disease and to pursue eternal life. Today, phytochemicals in dietary plants and herbs have been shown to be the active ingredients, some of which have antiaging and longevity-promoting effects. Here, we summarize 210 antiaging phytochemicals in dietary plants and herbs, systematically classify them into 8 groups. We found that all groups of phytochemicals can be categorized into six areas that regulate organism longevity: ROS levels, nutrient sensing network, mitochondria, autophagy, gut microbiota, and lipid metabolism. We review the role of these processes in aging and the molecular mechanism of the health benefits through phytochemical-mediated regulation. Among these, how phytochemicals promote longevity through the gut microbiota and lipid metabolism is rarely highlighted in the field. Our understanding of the mechanisms of phytochemicals based on the above six aspects may provide a theoretical basis for the further development of antiaging drugs and new insights into the promotion of human longevity.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Jin Ma
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou 311300, China
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg 41390, Sweden
| |
Collapse
|
2
|
Li W, Gao L, Huang W, Ma Y, Muhammad I, Hanif A, Ding Z, Guo X. Antioxidant properties of lactic acid bacteria isolated from traditional fermented yak milk and their probiotic effects on the oxidative senescence of Caenorhabditis elegans. Food Funct 2022; 13:3690-3703. [PMID: 35262535 DOI: 10.1039/d1fo03538j] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The objectives of the current study were to screen antioxidant lactic acid bacteria (LAB) strains isolated from traditionally fermented Tibetan yak milk, and to evaluate their probiotic effects on the oxidative senescence of Caenorhabditis elegans (C. elegans). A total of 10 LAB isolates were assessed for their antioxidant activity by in vitro assays, and three strains with high activity were selected for an investigation of their probiotic functions in C. elegans. The results indicated that Lactobacillus plantarum As21 showed high anti-oxidant capacity and had a high survival rate (64%) in a simulated gastrointestinal tract. The lifespan of C. elegans treated with As21 was increased by 34.5% compared to the control group. Strain As21 also showed improved motility and enhanced resistance to heat stress and H2O2 stimulation in C. elegans. Moreover, treatment with As21 reduced the production of age-related reactive oxygen species (ROS) and malondialdehyde (MDA) damage and promoted the production of the antioxidants superoxide dismutase (SOD), catalase (CAT) and glutathione GSH. These results suggest that Lactobacillus plantarum strain As21 could be a potential probiotic strain for retarding ageing and could be used in functional foods.
Collapse
Affiliation(s)
- Wenyuan Li
- State key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. .,Probiotics and biological Feed Research Center, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Li'e Gao
- State key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. .,Probiotics and biological Feed Research Center, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Wenkang Huang
- State key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. .,Probiotics and biological Feed Research Center, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Ying Ma
- State key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. .,Probiotics and biological Feed Research Center, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Ishaq Muhammad
- State key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. .,Probiotics and biological Feed Research Center, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Anum Hanif
- State key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. .,Probiotics and biological Feed Research Center, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Zitong Ding
- State key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. .,Probiotics and biological Feed Research Center, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| | - Xusheng Guo
- State key Laboratory of Grassland and Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China. .,Probiotics and biological Feed Research Center, School of Life Sciences, Lanzhou University, Lanzhou 730000, PR China
| |
Collapse
|
3
|
Li Y, Wang D, Ping X, Zhang Y, Zhang T, Wang L, Jin L, Zhao W, Guo M, Shen F, Meng M, Chen X, Zheng Y, Wang J, Li D, Zhang Q, Hu C, Xu L, Ma X. Local hyperthermia therapy induces browning of white fat and treats obesity. Cell 2022; 185:949-966.e19. [PMID: 35247329 DOI: 10.1016/j.cell.2022.02.004] [Citation(s) in RCA: 92] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/28/2021] [Accepted: 02/02/2022] [Indexed: 02/08/2023]
Abstract
Beige fat plays key roles in the regulation of systemic energy homeostasis; however, detailed mechanisms and safe strategy for its activation remain elusive. In this study, we discovered that local hyperthermia therapy (LHT) targeting beige fat promoted its activation in humans and mice. LHT achieved using a hydrogel-based photothermal therapy activated beige fat, preventing and treating obesity in mice without adverse effects. HSF1 is required for the effects since HSF1 deficiency blunted the metabolic benefits of LHT. HSF1 regulates Hnrnpa2b1 (A2b1) transcription, leading to increased mRNA stability of key metabolic genes. Importantly, analysis of human association studies followed by functional analysis revealed that the HSF1 gain-of-function variant p.P365T is associated with improved metabolic performance in humans and increased A2b1 transcription in mice and cells. Overall, we demonstrate that LHT offers a promising strategy against obesity by inducing beige fat activation via HSF1-A2B1 transcriptional axis.
Collapse
Affiliation(s)
- Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xiaodan Ping
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yankang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ting Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Li Jin
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Wenjun Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Mingwei Guo
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Fei Shen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Xin Chen
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Ying Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Jiqiu Wang
- Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Dali Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qiang Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Cheng Hu
- Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China; Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China.
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai 200241, China; Department of Endocrinology and Metabolism, Fengxian Central Hospital Affiliated to Southern Medical University, Shanghai 201499, China; Shanghai Frontiers Science Center of Genome Editing and Cell Therapy, Shanghai Key Laboratory of Regulatory Biology and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
4
|
Sujkowski A, Spierer AN, Rajagopalan T, Bazzell B, Safdar M, Imsirovic D, Arking R, Rand DM, Wessells R. Mito-nuclear interactions modify Drosophila exercise performance. Mitochondrion 2019; 47:188-205. [PMID: 30408593 PMCID: PMC7035791 DOI: 10.1016/j.mito.2018.11.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 10/19/2018] [Accepted: 11/03/2018] [Indexed: 02/08/2023]
Abstract
Endurance exercise has received increasing attention as a broadly preventative measure against age-related disease and dysfunction. Improvement of mitochondrial quality by enhancement of mitochondrial turnover is thought to be among the important molecular mechanisms underpinning the benefits of exercise. Interactions between the mitochondrial and nuclear genomes are important components of the genetic basis for variation in longevity, fitness and the incidence of disease. Here, we examine the effects of replacing the mitochondrial genome (mtDNA) of several Drosophila strains with mtDNA from other strains, or from closely related species, on exercise performance. We find that mitochondria from flies selected for longevity increase the performance of flies from a parental strain. We also find evidence that mitochondria from other strains or species alter exercise performance, with examples of both beneficial and deleterious effects. These findings suggest that both the mitochondrial and nuclear genomes, as well as interactions between the two, contribute significantly to exercise capacity.
Collapse
Affiliation(s)
- Alyson Sujkowski
- Department of Physiology, Wayne State University, Detroit, MI, United States
| | - Adam N Spierer
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| | - Thiviya Rajagopalan
- Department of Physiology, Wayne State University, Detroit, MI, United States
| | - Brian Bazzell
- Department of Physiology, Wayne State University, Detroit, MI, United States
| | - Maryam Safdar
- Department of Physiology, Wayne State University, Detroit, MI, United States
| | - Dinko Imsirovic
- Department of Physiology, Wayne State University, Detroit, MI, United States
| | - Robert Arking
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, United States
| | - Robert Wessells
- Department of Physiology, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
5
|
Zhao Q, Coelho MSZS, Li S, Saldiva PHN, Hu K, Abramson MJ, Huxley RR, Guo Y. Spatiotemporal and demographic variation in the association between temperature variability and hospitalizations in Brazil during 2000-2015: A nationwide time-series study. ENVIRONMENT INTERNATIONAL 2018; 120:345-353. [PMID: 30114624 DOI: 10.1016/j.envint.2018.08.021] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Extreme temperature events are known to be adversely associated with a range of health outcomes, but little is known about the effect of less extreme, but more frequent fluctuation in temperature. We examined the spatiotemporal and demographic variation in the effect of temperature variability (TV) on nationwide hospitalizations in Brazil during 2000-2015. METHODS Data on daily hospitalizations and weather variables were collected from 1814 cities, comprising 78.4% of Brazilian population. TV was defined as the standard deviation of daily minimum and maximum temperatures during exposure days. City-specific TV effect was estimated using a quasi-Poisson regression model, and then pooled at the national and regional level using meta-analysis. Stratified analyses were performed by sex, 10 age-groups, and 11 cause categories. Meta-regression was applied to city-year-specific estimates to examine the temporal change. RESULTS The estimate of TV effect peaked on 0-1 days' exposure, contributing to 3.5% [95% confidence interval (CI): 3.1-3.8%] of hospitalizations nationwide, equalling 221 (95%CI: 200-242) cases per 100,000 population annually. The effect estimate varied across 11 cause categories, which was strongest for respiratory admissions. Males, particular those 10-49 year old were more affected than females but there was no sex difference for the attributable hospitalization rate. The attributable rate for the under-fives was twice as high as for the elderly, and five times higher than in adults. The majority of the most affected cities were located in the central west and the inland of northeast. The risk of hospitalization related to TV showed a significant increase over the 16-year period at the national level. CONCLUSIONS In Brazil, the effect of TV on hospitalization is acute, and varies by spatial, sex, age, and cause category. Given there is no evidence regarding TV adaptation, hospitalization burden associated with TV is likely to further increase and warrants consideration when developing future public health policies in the context of climate change.
Collapse
Affiliation(s)
- Qi Zhao
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
| | - Micheline S Z S Coelho
- Institute of Advanced Studies, University of São Paulo, São Paulo 05508-970, Brazil; Faculty of Science, School of Life Sciences, University Technology of Sydney, Sydney 2007, Australia
| | - Shanshan Li
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia.
| | - Paulo H N Saldiva
- Institute of Advanced Studies, University of São Paulo, São Paulo 05508-970, Brazil
| | - Kejia Hu
- Institute of Island and Coastal Ecosystems, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Michael J Abramson
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia
| | - Rachel R Huxley
- College of Science, Health and Engineering, La Trobe University, Melbourne 3086, Australia
| | - Yuming Guo
- Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne 3004, Australia.
| |
Collapse
|
6
|
Hassanpour SH, Dehghani MA, Karami SZ. Study of respiratory chain dysfunction in heart disease. J Cardiovasc Thorac Res 2018; 10:1-13. [PMID: 29707171 PMCID: PMC5913686 DOI: 10.15171/jcvtr.2018.01] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 12/25/2017] [Indexed: 02/06/2023] Open
Abstract
The relentlessly beating heart has the greatest oxygen consumption of any organ in the body at rest reflecting its huge metabolic turnover and energetic demands. The vast majority of its energy is produced and cycled in form of ATP which stems mainly from oxidative phosphorylation occurring at the respiratory chain in the mitochondria. A part from energy production, the respiratory chain is also the main source of reactive oxygen species and plays a pivotal role in the regulation of oxidative stress. Dysfunction of the respiratory chain is therefore found in most common heart conditions. The pathophysiology of mitochondrial respiratory chain dysfunction in hereditary cardiac mitochondrial disease, the aging heart, in LV hypertrophy and heart failure, and in ischaemia-reperfusion injury is reviewed. We introduce the practicing clinician to the complex physiology of the respiratory chain, highlight its impact on common cardiac disorders and review translational pharmacological and non-pharmacological treatment strategies.
Collapse
Affiliation(s)
| | - Mohammad Amin Dehghani
- Department of Toxicology, School of Pharmacy, Ahvaz Jundishapour University of Medical Sciences, Ahvaz, Iran
| | | |
Collapse
|
7
|
Perspectives on mitochondrial uncoupling proteins-mediated neuroprotection. J Bioenerg Biomembr 2014; 47:119-31. [PMID: 25217852 DOI: 10.1007/s10863-014-9580-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
Abstract
The integrity of mitochondrial function is essential to cell life. It follows that disturbances of mitochondrial function will lead to disruption of cell function, expressed as disease or even death. Considering that neuronal uncoupling proteins (UCPs) decrease reactive oxygen species (ROS) production at the expense of energy production, it is important to understand the underlying mechanisms by which UCPs control the balance between the production of adenosine triphosphate (ATP) and ROS in the context of normal physiological activity and in pathological conditions. Here we review the current understanding of neuronal UCPs-mediated respiratory uncoupling process by performing a survey in their physiology and regulation. The latest findings regarding neuronal UCPs physiological roles and their involvement and interest as potential targets for therapeutic intervention in brain diseases will also be exploited.
Collapse
|
8
|
Wong HS, Chen J, Leong PK, Leung HY, Chan WM, Ko KM. Cistanches Herba reduces the weight gain in high fat diet-induced obese mice possibly through mitochondrial uncoupling. J Funct Foods 2014. [DOI: 10.1016/j.jff.2014.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
9
|
Schwarz K, Siddiqi N, Singh S, Neil CJ, Dawson DK, Frenneaux MP. The breathing heart - mitochondrial respiratory chain dysfunction in cardiac disease. Int J Cardiol 2013; 171:134-43. [PMID: 24377708 DOI: 10.1016/j.ijcard.2013.12.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 11/04/2013] [Accepted: 12/11/2013] [Indexed: 01/20/2023]
Abstract
The relentlessly beating heart has the greatest oxygen consumption of any organ in the body at rest reflecting its huge metabolic turnover and energetic demands. The vast majority of its energy is produced and cycled in form of ATP which stems mainly from oxidative phosphorylation occurring at the respiratory chain in the mitochondria. Apart from energy production, the respiratory chain is also the main source of reactive oxygen species and plays a pivotal role in the regulation of oxidative stress. Dysfunction of the respiratory chain is therefore found in most common heart conditions. The pathophysiology of mitochondrial respiratory chain dysfunction in hereditary cardiac mitochondrial disease, the ageing heart, in LV hypertrophy and heart failure, and in ischaemia-reperfusion injury is reviewed. We introduce the practising clinician to the complex physiology of the respiratory chain, highlight its impact on common cardiac disorders and review translational pharmacological and non-pharmacological treatment strategies.
Collapse
Affiliation(s)
| | | | | | - Christopher J Neil
- University of Aberdeen, United Kingdom; Western Health, Victoria, Australia
| | | | | |
Collapse
|
10
|
Cardoso S, Santos MS, Moreno A, Moreira PI. UCP2 and ANT differently modulate proton-leak in brain mitochondria of long-term hyperglycemic and recurrent hypoglycemic rats. J Bioenerg Biomembr 2013; 45:397-407. [PMID: 23504111 DOI: 10.1007/s10863-013-9503-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Accepted: 02/06/2013] [Indexed: 01/20/2023]
Abstract
A growing body of evidence suggests that mitochondrial proton-leak functions as a regulator of reactive oxygen species production and its modulation may limit oxidative injury to tissues. The main purpose of this work was to characterize the proton-leak of brain cortical mitochondria from long-term hyperglycemic and insulin-induced recurrent hypoglycemic rats through the modulation of the uncoupling protein 2 (UCP2) and adenine nucleotide translocator (ANT). Streptozotocin-induced diabetic rats were treated subcutaneously with twice-daily insulin injections during 2 weeks to induce the hypoglycemic episodes. No differences in the basal proton-leak, UCP2 and ANT protein levels were observed between the experimental groups. Mitochondria from recurrent hypoglycemic rats presented a decrease in proton-leak in the presence of GDP, a specific UCP2 inhibitor, while an increase in proton-leak was observed in the presence of linoleic acid, a proton-leak activator, this effect being reverted by the simultaneous addition of GDP. Mitochondria from long-term hyperglycemic rats showed an enhanced susceptibility to ANT modulation as demonstrated by the complete inhibition of basal and linoleic acid-induced proton-leak caused by the ANT specific inhibitor carboxyatractyloside. Our results show that recurrent-hypoglycemia renders mitochondria more susceptible to UCPs modulation while the proton-leak of long-term hyperglycemic rats is mainly modulated by ANT, which suggest that brain cortical mitochondria have distinct adaptation mechanisms in face of different metabolic insults.
Collapse
Affiliation(s)
- Susana Cardoso
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517, Coimbra, Portugal
| | | | | | | |
Collapse
|
11
|
Arora JS, Oe T, Blair IA. Synthesis of deuterium-labeled analogs of the lipid hydroperoxide-derived bifunctional electrophile 4-oxo-2( E)-nonenal. J Labelled Comp Radiopharm 2011; 54:247-251. [PMID: 25152561 DOI: 10.1002/jlcr.1860] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Lipid hydroperoxides undergo homolytic decomposition into the bifunctional 4-hydroxy-2(E)-nonenal and 4-oxo-2(E)-nonenal (ONE). These bifunctional electrophiles are highly reactive and can readily modify intracellular molecules including glutathione (GSH), deoxyribonucleic acid (DNA) and proteins. Lipid hydroperoxide-derived bifunctional electrophiles are thought to contribute to the pathogenesis of a number of diseases. ONE is an α,β-unsaturated aldehyde that can react in multiple ways and with glutathione, proteins and DNA. Heavy isotope-labeled analogs of ONE are not readily available for conducting mechanistic studies or for use as internal standards in mass spectrometry (MS)-based assays. An efficient onestep cost-effective method has been developed for the preparation of C-9 deuterium-labeled ONE. In addition, a method for specific deuterium labeling of ONE at C-2, C-3 or both C-2 and C-3 has been developed. This latter method involved the selective reduction of an intermediate alkyne either by lithium aluminum hydride or lithium aluminum deuteride and quenching with water or deuterium oxide. The availability of these heavy isotope analogs will be useful as internal standards for quantitative studies employing MS and for conducting mechanistic studies of complex interactions between ONE and DNA bases as well as between ONE and proximal amino acid residues in peptides and proteins.
Collapse
Affiliation(s)
- Jasbir S Arora
- Center for Cancer Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tomoyuki Oe
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aobaku, Sendai 980-8578, Japan
| | - Ian A Blair
- Center for Cancer Pharmacology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Leadsham JE, Gourlay CW. cAMP/PKA signaling balances respiratory activity with mitochondria dependent apoptosis via transcriptional regulation. BMC Cell Biol 2010; 11:92. [PMID: 21108829 PMCID: PMC3001716 DOI: 10.1186/1471-2121-11-92] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/25/2010] [Indexed: 12/31/2022] Open
Abstract
Background Appropriate control of mitochondrial function, morphology and biogenesis are crucial determinants of the general health of eukaryotic cells. It is therefore imperative that we understand the mechanisms that co-ordinate mitochondrial function with environmental signaling systems. The regulation of yeast mitochondrial function in response to nutritional change can be modulated by PKA activity. Unregulated PKA activity can lead to the production of mitochondria that are prone to the production of ROS, and an apoptotic form of cell death. Results We present evidence that mitochondria are sensitive to the level of cAMP/PKA signaling and can respond by modulating levels of respiratory activity or committing to self execution. The inappropriate activation of one of the yeast PKA catalytic subunits, Tpk3p, is sufficient to commit cells to an apoptotic death through transcriptional changes that promote the production of dysfunctional, ROS producing mitochondria. Our data implies that cAMP/PKA regulation of mitochondrial function that promotes apoptosis engages the function of multiple transcription factors, including HAP4, SOK2 and SCO1. Conclusions We propose that in yeast, as is the case in mammalian cells, mitochondrial function and biogenesis are controlled in response to environmental change by the concerted regulation of multiple transcription factors. The visualization of cAMP/TPK3 induced cell death within yeast colonies supports a model that PKA regulation plays a physiological role in coordinating respiratory function and cell death with nutritional status in budding yeast.
Collapse
Affiliation(s)
- Jane E Leadsham
- Department of Biosciences, University of Kent, Canterbury Kent, England, UK
| | | |
Collapse
|