1
|
Miller WB, Baluška F, Reber AS, Slijepčević P. Why death and aging ? All memories are imperfect. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 187:21-35. [PMID: 38316274 DOI: 10.1016/j.pbiomolbio.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/02/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024]
Abstract
Recent papers have emphasized the primary role of cellular information management in biological and evolutionary development. In this framework, intelligent cells collectively measure environmental cues to improve informational validity to support natural cellular engineering as collaborative decision-making and problem-solving in confrontation with environmental stresses. These collective actions are crucially dependent on cell-based memories as acquired patterns of response to environmental stressors. Notably, in a cellular self-referential framework, all biological information is ambiguous. This conditional requirement imposes a previously unexplored derivative. All cellular memories are imperfect. From this atypical background, a novel theory of aging and death is proposed. Since cellular decision-making is memory-dependent and biology is a continuous natural learning system, the accumulation of previously acquired imperfect memories eventually overwhelms the flexibility cells require to react adroitly to contemporaneous stresses to support continued cellular homeorhetic balance. The result is a gradual breakdown of the critical ability to efficiently measure environmental information and effect cell-cell communication. This age-dependent accretion governs senescence, ultimately ending in death as an organism-wide failure of cellular networking. This approach to aging and death is compatible with all prior theories. Each earlier approach illuminates different pertinent cellular signatures of this ongoing, obliged, living process.
Collapse
Affiliation(s)
| | - František Baluška
- Institute of Cellular and Molecular Botany, University of Bonn, Germany.
| | - Arthur S Reber
- Department of Psychology, University of British Columbia, Vancouver, BC, Canada.
| | - Predrag Slijepčević
- Department of Life Sciences, College of Health, Medicine and Life Sciences, University of Brunel, UK.
| |
Collapse
|
2
|
Su H, Liu D, Shao J, Li Y, Wang X, Gao Q. Aging Liver: Can Exercise be a Better Way to Delay the Process than Nutritional and Pharmacological Intervention? Focus on Lipid Metabolism. Curr Pharm Des 2021; 26:4982-4991. [PMID: 32503400 DOI: 10.2174/1381612826666200605111232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Nowadays, the world is facing a common problem that the population aging process is accelerating. How to delay metabolic disorders in middle-aged and elderly people, has become a hot scientific and social issue worthy of attention. The liver plays an important role in lipid metabolism, and abnormal lipid metabolism may lead to liver diseases. Exercise is an easily controlled and implemented intervention, which has attracted extensive attention in improving the health of liver lipid metabolism in the elderly. This article reviewed the body aging process, changes of lipid metabolism in the aging liver, and the mechanism and effects of different interventions on lipid metabolism in the aging liver, especially focusing on exercise intervention. METHODS A literature search was performed using PubMed-NCBI, EBSCO Host and Web of Science, and also a report from WHO. In total, 143 studies were included from 1986 to 15 February 2020. CONCLUSION Nutritional and pharmacological interventions can improve liver disorders, and nutritional interventions are less risky relatively. Exercise intervention can prevent and improve age-related liver disease, especially the best high-intensity interval training intensity and duration is expected to be one of the research directions in the future.
Collapse
Affiliation(s)
- Hao Su
- The School of Sport Science, Beijing Sport University, Beijing, China
| | - Dongsen Liu
- The School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| | - Jia Shao
- The Graduate School, Beijing Sport University, Beijing, China
| | - Yinuo Li
- The Graduate School, Beijing Sport University, Beijing, China
| | - Xiaoxia Wang
- The School of Physical Education and Art Education, Beijing Technology and Business University, Beijing, China
| | - Qi Gao
- The School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing, China
| |
Collapse
|
3
|
Das B, De D. Router design for nano-communication using actin quantum cellular automata. IET Nanobiotechnol 2020; 14:609-616. [PMID: 33010137 PMCID: PMC8676500 DOI: 10.1049/iet-nbt.2020.0186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/21/2020] [Accepted: 07/10/2020] [Indexed: 11/20/2022] Open
Abstract
Logic expressions can be designed from actin filaments. It is a protein that makes the cellular structure and plays an important role in intracellular communication. Nano communication technique has been established using actin cellular automata. Among several rules, (1, 30) and (4, 27) rules have been used to design 2 to 1 multiplexer, 4 to 1 multiplexer, 1 to 2 demultiplexer and 1 to 4 demultiplexer. Router or data selector has been made of using multiplexer and demultiplexer. Three novel circuits such as multiplexer, demultiplexer and nano-router have been designed using the projected mechanism. The primary focus of this proposed technique is on different designs of the multiplexer, demultiplexer and minimum cell count with minimum time steps. The different router circuits have been simulated with the help of Simulink by which output has been verified for different circuits. Stuck at fault analysis is also done in this study. Device density and power consumption have also been included in this study. A comparative analysis of the different designs of the router provides a better concept of circuit optimisation. Furthermore, this study analyses convenient forthcoming applications in nano-technology and nano-bio-molecular systems involving the proposed parameters.
Collapse
Affiliation(s)
- Biplab Das
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, West Bengal, BF-142, Sector-1, Saltlake, Kolkata-700064, India.
| | - Debashis De
- Department of Computer Science and Engineering, Maulana Abul Kalam Azad University of Technology, West Bengal, BF-142, Sector-1, Saltlake, Kolkata-700064, India
| |
Collapse
|
4
|
Impact on Longevity of Genetic Cardiovascular Risk and Lifestyle including Red Meat Consumption. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1305413. [PMID: 32714484 PMCID: PMC7354649 DOI: 10.1155/2020/1305413] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022]
Abstract
Background Cardiovascular risk (CVR) underlies aging process and longevity. Previous work points to genetic and environmental factors associated with this risk. Objectives The aim of this research is to look for any CVR gene-gene and gene-multifactorial/lifestyle interactions that may impact health and disease and underlie exceptional longevity. Methods A case-control study involving 521 both gender individuals, 253 centenarians (100.26 ± 1.98 years), and 268 controls (67.51 ± 3.25 years), low (LCR, n = 107) and high (HCR, n = 161) CVR. Hypertension, diabetes, obesity (BMI, kg·m−2), and impaired kidney function were defined according to standard criteria. CVR was calculated using Q risk®. DNA was genotyping (ACE-rs4646994, AGT-rs4762, AGR1-rs5182, GRK4-rs2960306, GRK4-rs1024323, NOS3-rs1799983, and SLC12A3-rs13306673) through iPlex-MassARRAY®, read by MALDI-TOF mass spectrometry, and analyzed by EARTDECODE®. Results Antilongevity factors consisted (OR 95% CI, p < 0.05) BMI 1.558 (1.445-1.680), hypertension 2.358 (1.565-3.553), smoking habits 4.528 (2.579-7.949), diabetes 5.553 (2.889-10.675), hypercholesterolemia 1.016 (1.010-1.022), and regular consumption of red meat 22.363 (13.987-35.755). Genetic aspects particularly for HCR individuals ACE II (OR: 3.96 (1.83-8.56), p < 0.0001) and NOS3 TT (OR: 3.11 (1.70-5.70), p < 0.0001) genotypes were also risk associate. Obesity, smoking, hypercholesterolemia, and frequent consumption of red meat have an additive action to hypertension in the longevity process. There was a synergistic interaction between the endothelial NOS3 genotypes and the severity of arterial hypertension. An epistatic interaction between functional genetic variants of GRK4 and angiotensinogen was also observed. Conclusions Cardiovascular risk-related genetic and multifactorial or predominantly lifestyle aspects and its interactions might influence the aging process and contribute to exceptional longevity in Portuguese centenarians. Besides lifestyle, the activity of nitrite oxide synthase may be one of the main physiologic regulators of cardiovascular protection in the path of longevity.
Collapse
|
5
|
Only two sex forms but multiple gender variants: How to explain? Commun Integr Biol 2018; 11:e1427399. [PMID: 29497472 PMCID: PMC5824932 DOI: 10.1080/19420889.2018.1427399] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 01/04/2018] [Indexed: 11/29/2022] Open
Abstract
Are sex and gender interchangeable terms? In classical biology, both are sometimes but not always used on an equal basis for some groups of animals. However, for our own species the Homo sapiens, they are not. A major question is why are there only two types of gametes (sperm- and egg cells), two types of sex steroids, (androgens and estrogens in vertebrates, and two types of ecdysteroids in insects), while the reproduction-related behaviour of the gamete producers displays a much greater variability than just two prominent forms, namely heterosexual males and heterosexual females? It indicates that in addition to a few sex-determining genes ( = the first pillar), other factors play a role. A second possible pillar is the still poorly understood cognitive memory system in which electrical phenomena and its association with the plasma membrane membrane-cytoskeletal complex of cells play a major role (learning, imitation and imprinting). This paper advances a third pillar, that hitherto has been almost completely ignored, namely the cellular Ca2+-homeostasis system, more specifically its sex-specific differences. Differential male-female genetics- and hormone-based Ca2+-homeostasis with effects on gender-related processes has been named Calcigender before. It will be argued that it follows from the principles of Ca2+- physiology and homeostasis that all individuals of a sexually reproducing animal population have a personalized gender behaviour. Thus, subdividing gender-behaviours in hetero-, homo-, bi-, trans- etc. which all result from a differential use of the very same basic physiological principles, is too primitive a system that may yield false sociological interpretations.
Collapse
|
6
|
Sadhu T, Das B, De D, Das JC. Design of binary subtractor using actin quantum cellular automata. IET Nanobiotechnol 2017. [DOI: 10.1049/iet-nbt.2017.0149] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Tapatosh Sadhu
- Department of Computer Science and EngineeringMaulana Abul Kalam Azad University of TechnologyBF‐142, Sector‐1, SaltlakeKolkata 700064West BengalIndia
| | - Biplab Das
- Department of Computer Science and EngineeringMaulana Abul Kalam Azad University of TechnologyBF‐142, Sector‐1, SaltlakeKolkata 700064West BengalIndia
| | - Debashis De
- Department of Computer Science and EngineeringMaulana Abul Kalam Azad University of TechnologyBF‐142, Sector‐1, SaltlakeKolkata 700064West BengalIndia
| | - Jadav Chandra Das
- Department of Computer Science and EngineeringMaulana Abul Kalam Azad University of TechnologyBF‐142, Sector‐1, SaltlakeKolkata 700064West BengalIndia
| |
Collapse
|
7
|
De Loof A. Calcitox-aging counterbalanced by endogenous farnesol-like sesquiterpenoids: An undervalued evolutionarily ancient key signaling pathway. Commun Integr Biol 2017; 10:e1341024. [PMID: 28919940 PMCID: PMC5595427 DOI: 10.1080/19420889.2017.1341024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 06/07/2017] [Indexed: 02/08/2023] Open
Abstract
Cells are powerful miniature electrophoresis chambers, at least during part of their life cycle. They die at the moment the voltage gradient over their plasma membrane, and their ability to drive a self-generated electric current carried by inorganic ions through themselves irreversibly collapses. Senescence is likely due to the progressive, multifactorial damage to the cell's electrical system. This is the essence of the "Fading electricity theory of aging" (De Loof et al., Aging Res. Rev. 2013;12:58-66). "Biologic electric current" is not carried by electrons, but by inorganic ions. The major ones are H+, Na+, K+, Ca2+, Mg2+, Cl- and HCO3-. Ca2+ and H+ in particular are toxic to cells. At rising concentrations, they can alter the 3D-conformation of chromatin and some (e.g. cytoskeletal) proteins: Calcitox and Protontox. This paper only focuses on Calcitox and endogenous sesquiterpenoids. pH-control and Ca2+-homeostasis have been shaped to near perfection during billions of years of evolution. The role of Ca2+ in some aspects of aging, e.g., as causal to neurodegenerative diseases is still debated. The main anti-Calcitox mechanism is to keep free cytoplasmic Ca2+ as low as possible. This can be achieved by restricting the passive influx of Ca2+ through channels in the plasma membrane, and by maximizing the active extrusion of excess Ca2+ e.g., by means of different types of Ca2+-ATPases. Like there are mechanisms that antagonize the toxic effects of Reactive Oxygen Species (ROS), there must also exist endogenous tools to counteract Calcitox. During a re-evaluation of which mechanism(s) exactly initiates the fast aging that accompanies induction of metamorphosis in insects, a causal relationship between absence of an endogenous sesquiterpenoid, namely the farnesol ester named "juvenile hormone," and disturbed Ca2+-homeostasis was suggested. In this paper, this line of thinking is further explored and extended to vertebrate physiology. A novel concept emerges: horseshoe-shaped sesquiterpenoids seem to act as "inbrome" agonists with the function of a "chemical valve" or "spring" in some types of multi-helix transmembrane proteins (intramolecular prenylation), from bacterial rhodopsins to some types of GPCRs and ion pumps, in particular the SERCA-Ca2+-pump. This further underpins the Fading Electricity Theory of Aging.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Leuven, Belgium
| |
Collapse
|
8
|
De Loof A. The evolution of "Life": A Metadarwinian integrative approach. Commun Integr Biol 2017; 10:e1301335. [PMID: 28702123 PMCID: PMC5501214 DOI: 10.1080/19420889.2017.1301335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 02/24/2017] [Accepted: 02/24/2017] [Indexed: 11/12/2022] Open
Abstract
It is undeniably very logical to first formulate an unambiguous definition of “Life” before engaging in defining the parameters instrumental to Life's evolution. Because nearly everybody assumes, erroneously in my opinion, that catching Life's essence in a single sentence is impossible, this way of thinking remained largely unexplored in evolutionary theory. Upon analyzing what exactly happens at the transition from “still alive” to “just dead,” the following definition emerged. What we call “Life” (L) is an activity. It is nothing other than the total sum (∑) of all communication acts (C) executed, at moment t, by entities organized as sender-receiver compartments: L = ∑C Such “living” entities are self-electrifying and talking ( = communicating) aggregates of fossil stardust operating in an environment heavily polluted by toxic calcium. Communication is a multifaceted, complex process that is seldom well explained in introductory textbooks of biology. Communication is instrumental to adaptation because, at the cellular level, any act of communication is in fact a problem-solving act. It can be logically deduced that not Natural Selection itself but communication/problem-solving activity preceding selection is the universal driving force of evolution. This is against what textbooks usually claim, although doubt on the status of Natural Selection as driving force has been around for long. Finally, adopting the sender-receiver with its 2 memory systems (genetic and cognitive, both with their own rules) and 2 types of progeny (”physical children” and “pupils”) as the universal unit of architecture and function of all living entities, also enables the seamless integration of cultural and organic evolution, another long-standing tough problem in evolutionary theory. Paraphrasing Theodosius Dobzhansky, the very essence of biology is: “Nothing in biology and evolutionary theory makes sense except in the light of the ability of living matter to communicate, and by doing so, to solve problems.”
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Leuven, Belgium
| |
Collapse
|
9
|
da Costa JP, Vitorino R, Silva GM, Vogel C, Duarte AC, Rocha-Santos T. A synopsis on aging-Theories, mechanisms and future prospects. Ageing Res Rev 2016; 29:90-112. [PMID: 27353257 PMCID: PMC5991498 DOI: 10.1016/j.arr.2016.06.005] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/23/2016] [Accepted: 06/23/2016] [Indexed: 12/31/2022]
Abstract
Answering the question as to why we age is tantamount to answering the question of what is life itself. There are countless theories as to why and how we age, but, until recently, the very definition of aging - senescence - was still uncertain. Here, we summarize the main views of the different models of senescence, with a special emphasis on the biochemical processes that accompany aging. Though inherently complex, aging is characterized by numerous changes that take place at different levels of the biological hierarchy. We therefore explore some of the most relevant changes that take place during aging and, finally, we overview the current status of emergent aging therapies and what the future holds for this field of research. From this multi-dimensional approach, it becomes clear that an integrative approach that couples aging research with systems biology, capable of providing novel insights into how and why we age, is necessary.
Collapse
Affiliation(s)
- João Pinto da Costa
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal.
| | - Rui Vitorino
- Department of Medical Sciences, Institute for Biomedicine-iBiMED, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Department of Physiology and Cardiothoracic Surgery, Faculty of Medicine, University of Porto, Porto, Portugal
| | - Gustavo M Silva
- Department of Biology, Center for Genomics and Systems Biology, NY, NY 10003, USA
| | - Christine Vogel
- Department of Biology, Center for Genomics and Systems Biology, NY, NY 10003, USA
| | - Armando C Duarte
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Teresa Rocha-Santos
- CESAM and Department of Chemistry, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| |
Collapse
|
10
|
De Loof A. The cell's self-generated "electrome": The biophysical essence of the immaterial dimension of Life? Commun Integr Biol 2016; 9:e1197446. [PMID: 27829975 PMCID: PMC5100658 DOI: 10.1080/19420889.2016.1197446] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 05/30/2016] [Accepted: 05/31/2016] [Indexed: 11/16/2022] Open
Abstract
In the classical “mind-body” wording, “body” is usually associated with the “mass aspect” of living entities and “mind” with the “immaterial” one. Thoughts, consciousness and soul are classified as immaterial. A most challenging question emerges: Can something that is truly immaterial, thus that in the wording of physics has no mass, exist at all? Many will answer: “No, impossible.” My answer is that it is very well possible, that no esoteric mechanisms need to be invoked, but that this possibility is inherent to 2 well established but undervalued physiological mechanisms. The first one is electrical in nature. In analogy with “genome,” “proteome” etc. “electrome” (a novel term) stands for the totality of all ionic currents of any living entity, from the cellular to the organismal level. Cellular electricity is truly vital. Death of any cell ensues at the very moment that it irreversibly (excluding regeneration) loses its ability to realize its electrical dimension. The second mechanism involves communication activity that is invariably executed by sender-receiver entities that incessantly handle information. Information itself is immaterial (= no mass). Both mechanisms are instrumental to the functioning of all cells, in particular to their still enigmatic cognitive memory system. Ionic/electrical currents associated with the cytoskeleton likely play a key role but have been largely overlooked. This paper aims at initiating a discussion platform from which students with different backgrounds but all interested in the immaterial dimension of life could engage in elaborating an integrating vocabulary and in initiating experimental approaches.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven , Leuven, Belgium
| |
Collapse
|
11
|
De Loof A, Schoofs L, Huybrechts R. The endocrine system controlling sexual reproduction in animals: Part of the evolutionary ancient but well conserved immune system? Gen Comp Endocrinol 2016; 226:56-71. [PMID: 26707056 DOI: 10.1016/j.ygcen.2015.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 12/08/2015] [Accepted: 12/15/2015] [Indexed: 12/14/2022]
Abstract
Drastic changes in hormone titers, in particular of steroid hormones, are intuitively interpreted as necessary and beneficial for optimal functioning of animals. Peaks in progesterone- and estradiol titers that accompany the estrus cycle in female vertebrates as well as in ecdysteroids at each molt and during metamorphosis of holometabolous insects are prominent examples. A recent analysis of insect metamorphosis yielded the view that, in general, a sharp rise in sex steroid hormone titer signals that somewhere in the body some tissue(s) is undergoing programmed cell death/apoptosis. Increased steroid production is part of this process. Typical examples are ovarian follicle cells in female vertebrates and invertebrates and the prothoracic gland cells, the main production site of ecdysteroids in larval insects. A duality emerges: programmed cell death-apoptosis is deleterious at the cellular level, but it may yield beneficial effects at the organismal level. Reconciling both opposites requires reevaluating the probable evolutionary origin and role of peptidic brain hormones that direct steroid hormone synthesis. Do e.g. Luteinizing Hormone in vertebrates and Prothoracicotropic Hormone (PTTH: acting through the Torso receptor) in insects still retain an ancient role as toxins in the early immune system? Does the functional link of some neuropeptides with Ca(2+)-induced apoptosis make sense in endocrine archeology? The endocrine system as a remnant of the ancient immune system is undoubtedly counterintuitive. Yet, we will argue that such paradigm enables the logical framing of many aspects, the endocrine one inclusive of both male and female reproductive physiology.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium.
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven-University of Leuven, Belgium
| | - Roger Huybrechts
- Insect Physiology and Molecular Ethology Group, Department of Biology, KU Leuven-University of Leuven, Belgium
| |
Collapse
|
12
|
Galván I, Naudí A, Erritzøe J, Møller AP, Barja G, Pamplona R. Long lifespans have evolved with long and monounsaturated fatty acids in birds. Evolution 2015; 69:2776-84. [PMID: 26294378 DOI: 10.1111/evo.12754] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 08/11/2015] [Indexed: 12/15/2022]
Abstract
The evolution of lifespan is a central question in evolutionary biology, begging the question why there is so large variation among taxa. Specifically, a central quest is to unravel proximate causes of ageing. Here, we show that the degree of unsaturation of liver fatty acids predicts maximum lifespan in 107 bird species. In these birds, the degree of fatty acid unsaturation is positively related to maximum lifespan across species. This is due to a positive effect of monounsaturated fatty acid content, while polyunsaturated fatty acid content negatively correlates with maximum lifespan. Furthermore, fatty acid chain length unsuspectedly increases with maximum lifespan independently of degree of unsaturation. These findings tune theories on the proximate causes of ageing while providing evidence that the evolution of lifespan in birds occurs in association with fatty acid profiles. This suggests that studies of proximate and ultimate questions may facilitate our understanding of these central evolutionary questions.
Collapse
Affiliation(s)
- Ismael Galván
- Departamento de Ecología Evolutiva, Estación Biológica de Doñana - CSIC, c/ Américo Vespucio s/n, 41092, Sevilla, Spain.
| | - Alba Naudí
- Departamento de Medicina Experimental, Universidad de Lleida - Instituto de Investigación Biomédica de Lleida (IRBLleida), 25198, Lleida, Spain
| | | | - Anders P Møller
- Laboratoire d'Ecologie, Systématique et Evolution, Université Paris-Sud 11, Bâtiment 362, 91405, Orsay Cedex, France
| | - Gustavo Barja
- Departamento de Fisiología Animal II, Universidad Complutense de Madrid, c/ José Antonio Novais 2, 28040, Madrid, Spain
| | - Reinald Pamplona
- Departamento de Medicina Experimental, Universidad de Lleida - Instituto de Investigación Biomédica de Lleida (IRBLleida), 25198, Lleida, Spain
| |
Collapse
|
13
|
Funk RHW. Endogenous electric fields as guiding cue for cell migration. Front Physiol 2015; 6:143. [PMID: 26029113 PMCID: PMC4429568 DOI: 10.3389/fphys.2015.00143] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 04/21/2015] [Indexed: 12/17/2022] Open
Abstract
This review covers two topics: (1) "membrane potential of low magnitude and related electric fields (bioelectricity)" and (2) "cell migration under the guiding cue of electric fields (EF)."Membrane potentials for this "bioelectricity" arise from the segregation of charges by special molecular machines (pumps, transporters, ion channels) situated within the plasma membrane of each cell type (including eukaryotic non-neural animal cells). The arising patterns of ion gradients direct many cell- and molecular biological processes such as embryogenesis, wound healing, regeneration. Furthermore, EF are important as guiding cues for cell migration and are often overriding chemical or topographic cues. In osteoblasts, for instance, the directional information of EF is captured by charged transporters on the cell membrane and transferred into signaling mechanisms that modulate the cytoskeleton and motor proteins. This results in a persistent directional migration along an EF guiding cue. As an outlook, we discuss questions concerning the fluctuation of EF and the frequencies and mapping of the "electric" interior of the cell. Another exciting topic for further research is the modeling of field concepts for such distant, non-chemical cellular interactions.
Collapse
|
14
|
De Loof A, De Haes W, Janssen T, Schoofs L. The essence of insect metamorphosis and aging: electrical rewiring of cells driven by the principles of juvenile hormone-dependent Ca(2+)-homeostasis. Gen Comp Endocrinol 2014; 199:70-85. [PMID: 24480635 DOI: 10.1016/j.ygcen.2014.01.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 01/22/2023]
Abstract
In holometabolous insects the fall to zero of the titer of Juvenile Hormone ends its still poorly understood "status quo" mode of action in larvae. Concurrently it initiates metamorphosis of which the programmed cell death of all internal tissues that actively secrete proteins, such as the fat body, midgut, salivary glands, prothoracic glands, etc. is the most drastic aspect. These tissues have a very well developed rough endoplasmic reticulum, a known storage site of intracellular Ca(2+). A persistent high [Ca(2+)]i is toxic, lethal and causal to apoptosis. Metamorphosis becomes a logical phenomenon if analyzed from: (1) the causal link between calcium toxicity and apoptosis; (2) the largely overlooked fact that at least some isoforms of Ca(2+)-ATPases have a binding site for farnesol-like endogenous sesquiterpenoids (FRS). The Ca(2+)-ATPase blocker thapsigargin, like JH a sesquiterpenoid derivative, illustrates how absence of JH might work. The Ca(2+)-homeostasis system is concurrently extremely well conserved in evolution and highly variable, enabling tissue-, developmental-, and species specificity. As long as JH succeeds in keeping [Ca(2+)]i low by keeping the Ca(2+)-ATPases pumping, it acts as "the status quo" hormone. When it disappears, its various inhibitory effects are lifted. The electrical wiring system of cells, in particular in the regenerating tissues, is subject to change during metamorphosis. The possibility is discussed that in vertebrates an endogenous farnesol-like sesquiterpenoid, probably farnesol itself, acts as a functional, but hitherto completely overlooked Juvenile anti-aging "Inbrome", a novel concept in signaling.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium.
| | - Wouter De Haes
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium
| | - Tom Janssen
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven - University of Leuven, Belgium
| |
Collapse
|
15
|
Manayi A, Saeidnia S, Gohari AR, Abdollahi M. Methods for the discovery of new anti-aging products--targeted approaches. Expert Opin Drug Discov 2014; 9:383-405. [PMID: 24494592 DOI: 10.1517/17460441.2014.885014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Aging is considered to be one of the most complicated and heterogeneous phenomena and is the main risk factor for most chronic diseases, disabilities and declining health. Aging cells cease to divide and drive the progression of illness through various pathways. Over the years, a number of anti-aging medicines of natural and synthetic origin have been introduced. Indeed, some studies have identified senescent cells as potential therapeutic targets in the treatment of aging and age-related diseases. AREAS COVERED In this review, the authors highlight and critically review the possible mechanisms of the aging process and related illnesses. The authors give particular attention to illnesses, including Alzheimer's disease, Parkinson's disease, skin aging and cardiovascular diseases. EXPERT OPINION Several reports have highlighted that mitochondria are a key factor in the progression of aging and neurodegenerative illnesses. This is due to their production of extra amounts of reactive oxygen species, which leads into progressive caspase-dependent apoptosis and cell death. Therefore, strategies to prevent/reduce oxidative stress-mediated aging, whether environmental, nutritional and pharmacological, need to be taken into account. Presently, Drosophila melanogaster and Caenorhabditis elegans, which focus on the evolutionary and genetic foundations of aging, have helped to establish the screening of several synthetic and natural compounds with large cohorts in a quick manner. However, there is yet to be any efficient experimental evidence to prove the exact role of senescent cells in age-related dysfunction and further studies are required to better understand these processes.
Collapse
Affiliation(s)
- Azadeh Manayi
- Tehran University of Medical Sciences, Faculty of Pharmacy, Medicinal Plants Research Center , Tehran 1417614411 , Iran
| | | | | | | |
Collapse
|
16
|
De Loof A, Marchal E, Rivera-Perez C, Noriega FG, Schoofs L. Farnesol-like endogenous sesquiterpenoids in vertebrates: the probable but overlooked functional "inbrome" anti-aging counterpart of juvenile hormone of insects? Front Endocrinol (Lausanne) 2014; 5:222. [PMID: 25610425 PMCID: PMC4285131 DOI: 10.3389/fendo.2014.00222] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/03/2014] [Indexed: 01/23/2023] Open
Abstract
Literature on the question whether the juvenile stage of vertebrates is hormonally regulated is scarce. It seems to be intuitively assumed that this stage of development is automated, and does not require any specific hormone(s). Such reasoning mimics the state of affairs in insects until it was shown that surgical removal of a tiny pair of glands in the head, the corpora allata, ended larval life and initiated metamorphosis. Decades later, the responsible hormone was found and named "juvenile hormone" (JH) because when present, it makes a larva molt into another larval stage. JH is a simple ester of farnesol, a sesquiterpenoid present in all eukaryotes. Whereas vertebrates do not have an anatomical counterpart of the corpora allata, their tissues do contain farnesol-like sesquiterpenoids (FLS). Some display typical JH activity when tested in appropriate insect bioassays. Some FLS are intermediates in the biosynthetic pathway of cholesterol, a compound that insects and nematodes (=Ecdysozoa) cannot synthesize by themselves. They ingest it as a vitamin. Until a recent (2014) reexamination of the basic principle underlying insect metamorphosis, it had been completely overlooked that the Ca(2+)-pump (SERCA) blocker thapsigargin is a sesquiterpenoid that mimics the absence of JH in inducing apoptosis. In our opinion, being in the juvenile state is primarily controlled by endogenous FLS that participate in controlling the activity of Ca(2+)-ATPases in the sarco(endo)plasmic reticulum (SERCAs), not only in insects but in all eukaryotes. Understanding the control mechanisms of being in the juvenile state may boost research not only in developmental biology in general, but also in diseases that develop after the juvenile stage, e.g., Alzheimer's disease. It may also help to better understand some of the causes of obesity, a syndrome that holometabolous last larval insects severely suffer from, and for which they found a very drastic but efficient solution, namely metamorphosis.
Collapse
Affiliation(s)
- Arnold De Loof
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
- *Correspondence: Arnold De Loof, Functional Genomics and Proteomics Group, Department of Biology, KU Leuven–University of Leuven, Naamsestraat 59, Leuven 3000, Belgium e-mail:
| | - Elisabeth Marchal
- Molecular Developmental Physiology and Signal Transduction Group, Department of Biology, KU Leuven, Leuven, Belgium
| | | | - Fernando G. Noriega
- Department of Biological Sciences, Florida International University, Miami, FL, USA
| | - Liliane Schoofs
- Functional Genomics and Proteomics Group, Department of Biology, KU Leuven, Leuven, Belgium
| |
Collapse
|
17
|
De Loof A, Boerjan B, Ernst UR, Schoofs L. The mode of action of juvenile hormone and ecdysone: towards an epi-endocrinological paradigm? Gen Comp Endocrinol 2013; 188:35-45. [PMID: 23454668 DOI: 10.1016/j.ygcen.2013.02.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/07/2013] [Accepted: 02/12/2013] [Indexed: 12/20/2022]
Abstract
In some insect species, two sites of juvenile hormone (JH) synthesis have been reported: the very well documented corpora allata that secrete JH for "general use", and the reproductive system, in particular the male accessory glands, in which the function of the sometimes huge amounts of JH (e.g. in Hyalophora cecropia) remains to be clarified. A recent finding in Schistocerca gregaria, namely that suppression of the ecdysteroid peak preceding a molt by RNAi of the Halloween genes spook, phantom and shade does not impede normal molting, challenges the (never experimentally proven) classical concept that such a peak is causally linked to a molt. Recent developments in epigenetic control of gene expression in both the honey bee and in locusts suggest that, in addition to the classical scheme of hormone-receptor (membrane- and/or nuclear) mode of action, there may be a third way. Upon combining these and other orphan data that do not fit in the commonly accepted textbook schemes, we here advance the working hypothesis that both JH and ecdysone might be important but overlooked players in epigenetic control of gene expression, in particular at extreme concentrations (peak values or total absence). In this review, we put forward how epi-endocrinology can complement classical arthropod endocrinology.
Collapse
Affiliation(s)
- Arnold De Loof
- Research Group of Functional Genomics and Proteomics, KU Leuven, Naamsestraat 59, Bus 2465, 3000 Leuven, Belgium.
| | | | | | | |
Collapse
|