1
|
Jin S, Lu W, Zhang J, Zhang L, Tao F, Zhang Y, Hu X, Liu Q. The mechanisms, hallmarks, and therapies for brain aging and age-related dementia. Sci Bull (Beijing) 2024:S2095-9273(24)00639-X. [PMID: 39332926 DOI: 10.1016/j.scib.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024]
Abstract
Age-related cognitive decline and dementia are significant manifestations of brain aging. As the elderly population grows rapidly, the health and socio-economic impacts of cognitive dysfunction have become increasingly significant. Although clinical treatment of dementia has faced considerable challenges over the past few decades, with limited breakthroughs in slowing its progression, there has been substantial progress in understanding the molecular mechanisms and hallmarks of age-related dementia (ARD). This progress brings new hope for the intervention and treatment of this disease. In this review, we categorize the latest findings in ARD biomarkers into four stages based on disease progression: healthy brain, pre-clinical, mild cognitive impairment, and dementia. We then systematically summarize the most promising therapeutic approaches to prevent or slow ARD at four levels: genome and epigenome, organelle, cell, and organ and organism. We emphasize the importance of early prevention and detection, along with the implementation of combined treatments as multimodal intervention strategies, to address brain aging and ARD in the future.
Collapse
Affiliation(s)
- Shiyun Jin
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230027, China; Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, China
| | - Wenping Lu
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230027, China; Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230027, China
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fangbiao Tao
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei 230032, China.
| | - Ye Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, China.
| | - Xianwen Hu
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230027, China; Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
2
|
Todorović N, Ostojic SM. Hydrogen as an innovative nootropic in health and disease. Nutr Health 2024:2601060241266389. [PMID: 39042916 DOI: 10.1177/02601060241266389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Molecular hydrogen (H2, dihydrogen) is an antioxidant and signaling molecule with potent antioxidative, antiapoptotic, and anti-inflammatory properties. Despite the growing interest in H2 as a potential therapeutic agent, the evidence regarding its potential as a nootropic remains limited. Only a handful of studies on the human population have evaluated its effects, although there are suggestive indications of its efficacy. The present paper overviews H2's potential as a novel agent for improving cognitive functions in health and disease contexts, highlighting its mechanisms of action and areas for further investigation. Current evidence suggests that H2 improves executive function, alertness and memory in several clinical trials, from healthy young and elderly individuals to individuals with altered circadian rhythms, neurodegenerative disorders, and cancer. Further investigations are needed to confirm the potential positive effects of dihydrogen as a nootropic agent in both health and disease.
Collapse
Affiliation(s)
- Nikola Todorović
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
| | - Sergej M Ostojic
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Novi Sad, Serbia
- Faculty of Health Sciences, University of Pecs, Pecs, Hungary
- Department of Nutrition and Public Health, University of Agder, Kristiansand, Norway
| |
Collapse
|
3
|
Abokyi S, Ghartey-Kwansah G, Tse DYY. TFEB is a central regulator of the aging process and age-related diseases. Ageing Res Rev 2023; 89:101985. [PMID: 37321382 DOI: 10.1016/j.arr.2023.101985] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/17/2023]
Abstract
Old age is associated with a greater burden of disease, including neurodegenerative disorders such as Alzheimer's disease and Parkinson's disease, as well as other chronic diseases. Coincidentally, popular lifestyle interventions, such as caloric restriction, intermittent fasting, and regular exercise, in addition to pharmacological interventions intended to protect against age-related diseases, induce transcription factor EB (TFEB) and autophagy. In this review, we summarize emerging discoveries that point to TFEB activity affecting the hallmarks of aging, including inhibiting DNA damage and epigenetic modifications, inducing autophagy and cell clearance to promote proteostasis, regulating mitochondrial quality control, linking nutrient-sensing to energy metabolism, regulating pro- and anti-inflammatory pathways, inhibiting senescence and promoting cell regenerative capacity. Furthermore, the therapeutic impact of TFEB activation on normal aging and tissue-specific disease development is assessed in the contexts of neurodegeneration and neuroplasticity, stem cell differentiation, immune responses, muscle energy adaptation, adipose tissue browning, hepatic functions, bone remodeling, and cancer. Safe and effective strategies of activating TFEB hold promise as a therapeutic strategy for multiple age-associated diseases and for extending lifespan.
Collapse
Affiliation(s)
- Samuel Abokyi
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China.
| | - George Ghartey-Kwansah
- Department of Biomedical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Dennis Yan-Yin Tse
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Research Centre for SHARP Vision, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR of China; Centre for Eye and Vision Research, 17W Hong Kong Science Park, Hong Kong SAR of China.
| |
Collapse
|
4
|
Gaspar-Silva F, Trigo D, Magalhaes J. Ageing in the brain: mechanisms and rejuvenating strategies. Cell Mol Life Sci 2023; 80:190. [PMID: 37354261 DOI: 10.1007/s00018-023-04832-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/26/2023]
Abstract
Ageing is characterized by the progressive loss of cellular homeostasis, leading to an overall decline of the organism's fitness. In the brain, ageing is highly associated with cognitive decline and neurodegenerative diseases. With the rise in life expectancy, characterizing the brain ageing process becomes fundamental for developing therapeutic interventions against the increased incidence of age-related neurodegenerative diseases and to aim for an increase in human life span and, more importantly, health span. In this review, we start by introducing the molecular/cellular hallmarks associated with brain ageing and their impact on brain cell populations. Subsequently, we assess emerging evidence on how systemic ageing translates into brain ageing. Finally, we revisit the mainstream and the novel rejuvenating strategies, discussing the most successful ones in delaying brain ageing and related diseases.
Collapse
Affiliation(s)
- Filipa Gaspar-Silva
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Diogo Trigo
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Joana Magalhaes
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
| |
Collapse
|
5
|
Fingelkurts AA, Fingelkurts AA. Turning Back the Clock: A Retrospective Single-Blind Study on Brain Age Change in Response to Nutraceuticals Supplementation vs. Lifestyle Modifications. Brain Sci 2023; 13:520. [PMID: 36979330 PMCID: PMC10046544 DOI: 10.3390/brainsci13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND There is a growing consensus that chronological age (CA) is not an accurate indicator of the aging process and that biological age (BA) instead is a better measure of an individual's risk of age-related outcomes and a more accurate predictor of mortality than actual CA. In this context, BA measures the "true" age, which is an integrated result of an individual's level of damage accumulation across all levels of biological organization, along with preserved resources. The BA is plastic and depends upon epigenetics. Brain state is an important factor contributing to health- and lifespan. METHODS AND OBJECTIVE Quantitative electroencephalography (qEEG)-derived brain BA (BBA) is a suitable and promising measure of brain aging. In the present study, we aimed to show that BBA can be decelerated or even reversed in humans (N = 89) by using customized programs of nutraceutical compounds or lifestyle changes (mean duration = 13 months). RESULTS We observed that BBA was younger than CA in both groups at the end of the intervention. Furthermore, the BBA of the participants in the nutraceuticals group was 2.83 years younger at the endpoint of the intervention compared with their BBA score at the beginning of the intervention, while the BBA of the participants in the lifestyle group was only 0.02 years younger at the end of the intervention. These results were accompanied by improvements in mental-physical health comorbidities in both groups. The pre-intervention BBA score and the sex of the participants were considered confounding factors and analyzed separately. CONCLUSIONS Overall, the obtained results support the feasibility of the goal of this study and also provide the first robust evidence that halting and reversal of brain aging are possible in humans within a reasonable (practical) timeframe of approximately one year.
Collapse
|
6
|
Hurvitz N, Elkhateeb N, Sigawi T, Rinsky-Halivni L, Ilan Y. Improving the effectiveness of anti-aging modalities by using the constrained disorder principle-based management algorithms. FRONTIERS IN AGING 2022; 3:1044038. [PMID: 36589143 PMCID: PMC9795077 DOI: 10.3389/fragi.2022.1044038] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022]
Abstract
Aging is a complex biological process with multifactorial nature underlined by genetic, environmental, and social factors. In the present paper, we review several mechanisms of aging and the pre-clinically and clinically studied anti-aging therapies. Variability characterizes biological processes from the genome to cellular organelles, biochemical processes, and whole organs' function. Aging is associated with alterations in the degrees of variability and complexity of systems. The constrained disorder principle defines living organisms based on their inherent disorder within arbitrary boundaries and defines aging as having a lower variability or moving outside the boundaries of variability. We focus on associations between variability and hallmarks of aging and discuss the roles of disorder and variability of systems in the pathogenesis of aging. The paper presents the concept of implementing the constrained disease principle-based second-generation artificial intelligence systems for improving anti-aging modalities. The platform uses constrained noise to enhance systems' efficiency and slow the aging process. Described is the potential use of second-generation artificial intelligence systems in patients with chronic disease and its implications for the aged population.
Collapse
Affiliation(s)
- Noa Hurvitz
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Narmine Elkhateeb
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Tal Sigawi
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel
| | - Lilah Rinsky-Halivni
- Braun School of Public Health, Hebrew University of Jerusalem, Jerusalem, Israel,Department of Global Health and Population, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Yaron Ilan
- Faculty of Medicine, Hebrew University and Department of Medicine, Hadassah Medical Center, Jerusalem, Israel,*Correspondence: Yaron Ilan,
| |
Collapse
|
7
|
Chen WC, Wang XY. Longitudinal associations between sleep duration and cognitive impairment in Chinese elderly. Front Aging Neurosci 2022; 14:1037650. [PMID: 36466606 PMCID: PMC9714471 DOI: 10.3389/fnagi.2022.1037650] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 10/25/2022] [Indexed: 09/01/2023] Open
Abstract
BACKGROUND Age-associated cognitive decline has become a major threat to both personal welfare and public health and can further develop into Dementia/Alzheimer's disease. Sleep is significantly correlated with cognitive function, but both cognitive impairment and sleep problems increase with normal aging. This study explored how sleep duration affects cognitive performance among older adults in China. METHODS Using data from the Chinese Longitudinal Healthy Longevity Survey (CLHLS) in 2014 and 2018, cognitive function was assessed via the Mini-Mental State Examination (MMSE), which included five domains: orientation, registration, attention or calculation, recall, and language. Logistic regression was used to examine whether the change in sleep duration was a risk factor for cognitive impairment. We also used multinomial logistic regression to study the impact of sleep duration and the changes in sleep duration on cognitive changes during the follow-up period. RESULTS The empirical study showed a U-shaped relationship between sleep duration and increased risk of cognitive impairment. Short (< 6 hours) and long (> 8 hours) sleep durations were positively associated with cognitive impairment. Tests of interactions between sleep duration and sleep quality showed that short sleep durations with fair sleep quality had an increased risk of cognitive impairment. Further, the participants were divided into three groups: normal cognition (MMSE > 24), mild cognitive impairment (MCI, 18 ≤ MMSE score ≤ 24), and severe cognitive impairment (MMSE < 18). First, of the participants with normal cognition at baseline, those who sleeping > 7 h at follow-up and > 7 h at both baseline and 4-year follow-up assessments could increase the risk of cognitive impairment. Second, for individuals with MCI at baseline, those who transitioned to sleeping > 7 h at follow-up period and > 7 h at both baseline and 4-year follow-up assessments had a lower chance of reverting to normal cognition. CONCLUSION Excessive sleep may be a major risk for cognitive impairment among older adults. Furthermore, a moderate amount of sleep could be a possible strategy to prevent cognitive impairment.
Collapse
Affiliation(s)
- Wei-chao Chen
- School of Journalism and Communication, Hunan Normal University, Changsha, China
| | - Xiao-yan Wang
- College of Finance and Statistics, Hunan University, Changsha, China
| |
Collapse
|
8
|
Sun Z, Ping P, Li Y, Feng L, Liu F, Zhao Y, Yao Y, Zhang P, Fu S. Relationships Between Traditional Chinese Medicine Constitution and Age-Related Cognitive Decline in Chinese Centenarians. Front Aging Neurosci 2022; 14:870442. [PMID: 35615593 PMCID: PMC9126494 DOI: 10.3389/fnagi.2022.870442] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/15/2022] [Indexed: 11/17/2022] Open
Abstract
Background Age-related cognitive decline (ARCD) is a common condition among older adults, affecting 100 million people worldwide. Traditional Chinese Medicine’s (TCM) constitution is closely related to the occurrence and development of diseases in the elderly population. However, little is known about the relationships between TCM constitution and ARCD in the super-aged population. The present study aimed to investigate the relationships between the TCM constitution and ARCD in Chinese centenarians and to explore the application of the constitution to prevent ARCD in the elderly population. Methods Each participant underwent a standardized epidemiological investigation and physical examination, based on the China Hainan Centenarian Cohort Study. Data on the demographic characteristics and TCM constitution were collected using structured questionnaires. Results The present study included 636 centenarians aged 100–116 years. The prevalence of ARCD was 87.7% (n = 558 centenarians). In multiple linear regression analysis, an inverse relationship between Qi depression and Mini-Mental State Examination scales was significant after controlling for a wide range of other factors (P < 0.05). In multiple logistic regression analysis, Qi depression was positively associated with ARCD after full adjustment (P < 0.05). Conclusion As the first study in the world, the present study provides strong epidemiological evidence that Qi depression has a significant relationship with ARCD in Chinese centenarians, and regulating Qi depression may be a valuable method to prevent and treat ARCD in the elderly population.
Collapse
Affiliation(s)
- Zhigao Sun
- Department of Traditional Chinese Medicine, Hainan Hospital of Chinese People’s Liberation Army General Hospital, Sanya, China
| | - Ping Ping
- Main Station of Drug Instrument Supervision and Inspection, Chinese People’s Liberation Army Joint Logistic Support Force, Beijing, China
| | - Yulong Li
- Department of Geriatric Cardiology, Chinese People’s Liberation Army General Hospital, Beijing, China
| | - Long Feng
- Department of Anesthesiology, Hainan Hospital of Chinese People’s Liberation Army General Hospital, Sanya, China
| | - Fan Liu
- Department of Traditional Chinese Medicine, Hainan Hospital of Chinese People’s Liberation Army General Hospital, Sanya, China
| | - Yali Zhao
- Central Laboratory, Hainan Hospital of Chinese People’s Liberation Army General Hospital, Sanya, China
- *Correspondence: Yali Zhao,
| | - Yao Yao
- Geriatrics Division, Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, United States
- Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing, China
- Yao Yao,
| | - Pei Zhang
- School of Life Sciences, Beijing Institute of Technology, Beijing, China
- Pei Zhang,
| | - Shihui Fu
- Department of Geriatric Cardiology, Chinese People’s Liberation Army General Hospital, Beijing, China
- Department of Cardiology, Hainan Hospital of Chinese People’s Liberation Army General Hospital, Sanya, China
- Shihui Fu,
| |
Collapse
|
9
|
Ondaro J, Hernandez-Eguiazu H, Garciandia-Arcelus M, Loera-Valencia R, Rodriguez-Gómez L, Jiménez-Zúñiga A, Goikolea J, Rodriguez-Rodriguez P, Ruiz-Martinez J, Moreno F, Lopez de Munain A, Holt IJ, Gil-Bea FJ, Gereñu G. Defects of Nutrient Signaling and Autophagy in Neurodegeneration. Front Cell Dev Biol 2022; 10:836196. [PMID: 35419363 PMCID: PMC8996160 DOI: 10.3389/fcell.2022.836196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/21/2022] [Indexed: 12/27/2022] Open
Abstract
Neurons are post-mitotic cells that allocate huge amounts of energy to the synthesis of new organelles and molecules, neurotransmission and to the maintenance of redox homeostasis. In neurons, autophagy is not only crucial to ensure organelle renewal but it is also essential to balance nutritional needs through the mobilization of internal energy stores. A delicate crosstalk between the pathways that sense nutritional status of the cell and the autophagic processes to recycle organelles and macronutrients is fundamental to guarantee the proper functioning of the neuron in times of energy scarcity. This review provides a detailed overview of the pathways and processes involved in the balance of cellular energy mediated by autophagy, which when defective, precipitate the neurodegenerative cascade of Parkinson's disease, frontotemporal dementia, amyotrophic lateral sclerosis or Alzheimer's disease.
Collapse
Affiliation(s)
- Jon Ondaro
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Haizea Hernandez-Eguiazu
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Maddi Garciandia-Arcelus
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Raúl Loera-Valencia
- Department of Neurology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (KI), Stockholm, Sweden
| | - Laura Rodriguez-Gómez
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Andrés Jiménez-Zúñiga
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Julen Goikolea
- Department of Neurology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (KI), Stockholm, Sweden
| | - Patricia Rodriguez-Rodriguez
- Department of Neurology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet (KI), Stockholm, Sweden
| | - Javier Ruiz-Martinez
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Donostia University Hospital, San Sebastian, Spain
| | - Fermín Moreno
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Donostia University Hospital, San Sebastian, Spain
| | - Adolfo Lopez de Munain
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Donostia University Hospital, San Sebastian, Spain
| | - Ian James Holt
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
- IKERBASQUE Basque Foundation for Science, Bilbao, Spain
| | - Francisco Javier Gil-Bea
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Gorka Gereñu
- Department of Neuroscience, Biodonostia Health Research Institute (IIS Biodonostia), San Sebastian, Spain
- Center for Biomedical Research of Neurodegenerative Diseases (CIBERNED), Madrid, Spain
- Department of Physiology, Faculty of Medicine and Nursing, University of Basque Country (UPV-EHU), Leioa, Spain
| |
Collapse
|
10
|
Meron E, Thaysen M, Angeli S, Antebi A, Barzilai N, Baur JA, Bekker-Jensen S, Birkisdottir M, Bischof E, Bruening J, Brunet A, Buchwalter A, Cabreiro F, Cai S, Chen BH, Ermolaeva M, Ewald CY, Ferrucci L, Florian MC, Fortney K, Freund A, Georgievskaya A, Gladyshev VN, Glass D, Golato T, Gorbunova V, Hoejimakers J, Houtkooper RH, Jager S, Jaksch F, Janssens G, Jensen MB, Kaeberlein M, Karsenty G, de Keizer P, Kennedy B, Kirkland JL, Kjaer M, Kroemer G, Lee KF, Lemaitre JM, Liaskos D, Longo VD, Lu YX, MacArthur MR, Maier AB, Manakanatas C, Mitchell SJ, Moskalev A, Niedernhofer L, Ozerov I, Partridge L, Passegué E, Petr MA, Peyer J, Radenkovic D, Rando TA, Rattan S, Riedel CG, Rudolph L, Ai R, Serrano M, Schumacher B, Sinclair DA, Smith R, Suh Y, Taub P, Trapp A, Trendelenburg AU, Valenzano DR, Verburgh K, Verdin E, Vijg J, Westendorp RGJ, Zonari A, Bakula D, Zhavoronkov A, Scheibye-Knudsen M. Meeting Report: Aging Research and Drug Discovery. Aging (Albany NY) 2022. [PMID: 35089871 PMCID: PMC8833115 DOI: 10.18632/aging.203859] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Aging is the single largest risk factor for most chronic diseases, and thus possesses large socioeconomic interest to continuously aging societies. Consequently, the field of aging research is expanding alongside a growing focus from the industry and investors in aging research. This year’s 8th Annual Aging Research and Drug Discovery (ARDD) meeting was organized as a hybrid meeting from August 30th to September 3rd 2021 with more than 130 attendees participating on-site at the Ceremonial Hall at University of Copenhagen, Denmark, and 1800 engaging online. The conference comprised of presentations from 75 speakers focusing on new research in topics including mechanisms of aging and how these can be modulated as well as the use of AI and new standards of practices within aging research. This year, a longevity workshop was included to build stronger connections with the clinical community.
Collapse
Affiliation(s)
- Esther Meron
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Maria Thaysen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Suzanne Angeli
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Adam Antebi
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Nir Barzilai
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA.,Institute for Aging Research, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Joseph A Baur
- Smilow Center for Translational Research, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Simon Bekker-Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Maria Birkisdottir
- Department of Molecular Genetics, Erasmus MC, Rotterdam, Netherlands.,Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Evelyne Bischof
- Shanghai University of Medicine and Health Sciences, College of Clinical Medicine, Shanghai, China
| | - Jens Bruening
- Max Planck Institute for Metabolism Research, Cologne, Germany
| | - Anne Brunet
- Department of Genetics, Stanford School of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Abigail Buchwalter
- Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Filipe Cabreiro
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London W12 0NN, UK.,CECAD Research Center, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Shiqing Cai
- Institute of Neuroscience, Chinese Academy of Science, Shanghai, China
| | - Brian H Chen
- FOXO Technologies Inc, Minneapolis, MN 55402, USA.,The Herbert Wertheim School of Public Health and Human Longevity Science, UC San Diego, La Jolla, CA 92093, USA
| | | | - Collin Y Ewald
- Laboratory of Extracellular Matrix Regeneration, Institute of Translational Medicine, Department of Health Sciences and Technology, ETH Zürich, Schwerzenbach CH-8603, Switzerland
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | | | | | - Adam Freund
- Arda Therapeutics, San Carlos, CA 94070, USA
| | | | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David Glass
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA
| | | | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY 14627, USA
| | - Jan Hoejimakers
- Department of Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Sibylle Jager
- L'Oréal Research and Innovation, Aulnay-sous-Bois, France
| | | | - Georges Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Matt Kaeberlein
- Departments of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Gerard Karsenty
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Peter de Keizer
- Department of Molecular Cancer Research, Center for Molecular Medicine, Division of Biomedical Genetics, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Brian Kennedy
- Buck Institute for Research on Aging, Novato, CA 94945, USA.,Departments of Biochemistry and Physiology, Yong Loo Lin School of Medicine, National University Singapore, Singapore.,Center for Healthy Longevity, National University Health System, Singapore
| | - James L Kirkland
- Division of General Internal Medicine, Department of Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael Kjaer
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, Inserm U1138, Paris, France
| | - Kai-Fu Lee
- Sinovation Ventures and Sinovation AI Institute, Beijing, China
| | - Jean-Marc Lemaitre
- Institute for Regenerative Medicine and Biotherapies, INSERM UMR 1183, Montpellier, France
| | | | - Valter D Longo
- USC Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Yu-Xuan Lu
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Michael R MacArthur
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Andrea B Maier
- Center for Healthy Longevity, National University Health System, Singapore.,Department of Human Movement Sciences, @AgeAmsterdam, Faculty of Behavioural and Movement Sciences, Amsterdam Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Medicine, Yong Loo Lin School of Medicine, National University Singapore, Singapore
| | | | - Sarah J Mitchell
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Alexey Moskalev
- Institute of Biology of FRC Komi Science Center of Ural Division of RAS, Syktyvkar, Russia.,Russian Clinical and Research Center of Gerontology, Moscow, Russia
| | - Laura Niedernhofer
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Ivan Ozerov
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Cologne, Germany
| | | | - Michael A Petr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Tracked.bio, Copenhagen, Denmark
| | | | - Dina Radenkovic
- Hooke London by Health and Longevity Optimisation, London, UK
| | - Thomas A Rando
- Department of Neurology and Neurological Sciences and Paul F. Glenn Center for Biology of Aging, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Suresh Rattan
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Christian G Riedel
- Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | | | - Ruixue Ai
- Department of Clinical Molecular Biology
- UiO, University of Oslo and Akershus University Hospital, Norway
| | - Manuel Serrano
- Institute for Research in Biomedicine (IRB Barcelona), Barcelona Institute of Science and Technology (BIST), Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Björn Schumacher
- CECAD Research Center, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - David A Sinclair
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of Aging Research at Harvard Medical School, Boston, MA 94107, USA
| | | | - Yousin Suh
- Departments of Obstetrics and Gynecology, Genetics and Development, Columbia University, New York, NY 10027, USA
| | - Pam Taub
- Division of Cardiovascular Medicine, University of California, San Diego, CA 92093, USA
| | - Alexandre Trapp
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Dario Riccardo Valenzano
- Max Planck Institute for Biology of Ageing, Cologne, Germany.,Leibniz Institute on Aging, Jena, Germany
| | | | - Eric Verdin
- Buck Institute for Research on Aging, Novato, CA 94945, USA
| | - Jan Vijg
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | - Daniela Bakula
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Alex Zhavoronkov
- Insilico Medicine, Hong Kong Science and Technology Park, Hong Kong
| | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Zanini D, Todorovic N, Korovljev D, Stajer V, Ostojic J, Purac J, Kojic D, Vukasinovic E, Djordjievski S, Sopic M, Guzonjic A, Ninic A, Erceg S, Ostojic SM. The effects of 6-month hydrogen-rich water intake on molecular and phenotypic biomarkers of aging in older adults aged 70 years and over: A randomized controlled pilot trial. Exp Gerontol 2021; 155:111574. [PMID: 34601077 DOI: 10.1016/j.exger.2021.111574] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 02/06/2023]
Abstract
In this randomized controlled pilot trial, we investigated the effects of a 6-month intake of hydrogen-rich water (HRW) on several molecular and phenotypic biomarkers of aging in older adults aged 70 years and over. Forty older adults (20 women) were randomly allocated in a parallel-group design to receive 0.5 L per day of HRW (15 ppm of hydrogen) or control drink (0 ppm of hydrogen) during a 6-month intervention period. The biomarkers assessed at baseline and 6-month follow up were molecular markers in the blood (DNA and chromosomes, nutrient sensing, protein, and lipid metabolism, oxidative stress and mitochondria, cell senescence, inflammation), brain metabolism, cognitive functioning, physical function and body composition, resting blood pressure, facial skin features, sleep outcomes, and health-related quality of life. The mean age, weight, and height of study participants were 76.0 ± 5.6 years, 78.2 ± 16.1 kg, height 167.5 ± 11.5 cm, respectively. A significant treatment vs. time interaction was found for telomere length (P = 0.049), with the length increased after HRW intervention (from 0.99 ± 0.15 at baseline to 1.02 ± 0.26 at follow up) and decreased after drinking control water (from 0.92 ± 0.27 to 0.79 ± 0.15). A marker of DNA methylation (Tet methylcytosine dioxygenase 2, TET2) expression at 6-month follow-up increased in both groups, yet the degree of elevation was significantly higher in HRW (from 0.81 ± 0.52 at baseline to 1.62 ± 0.66 at follow up) comparing to the control water (from 1.13 ± 0.82 to 1.76 ± 0.87) (P = 0.040). A strong trend for treatment vs. time interaction was found for a degree of DNA methylation (P = 0.166), with the methylation increased in the HRW group (from 120.6 ± 39.8 ng at baseline to 126.6 ± 33.8 ng at follow up) and decreased after taking control water (from 133.6 ± 52.9 ng to 121.2 ± 38.4 ng). HRW was superior to control water to increase brain choline and NAA levels in the left frontal grey matter, brain creatine at the right parietal white matter, and brain NAA at the right parietal mesial grey matter (P < 0.05). No significant differences were found between interventions for other outcomes (P > 0.05), except for a significantly improved chair stand performance after HRW intervention compared to the control water (P = 0.01). Owing to pleiotropic mechanisms of hydrogen action, this simple biomedical gas could be recognized as a possible anti-aging agent that tackles several hallmarks of aging, including loss of function and telomere length shortening. The study was registered at ClinicalTrials.gov (NCT04430803).
Collapse
Affiliation(s)
- Dragana Zanini
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Serbia
| | - Nikola Todorovic
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Serbia
| | - Darinka Korovljev
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Serbia
| | - Valdemar Stajer
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Serbia
| | | | - Jelena Purac
- Faculty of Sciences, University of Novi Sad, Serbia.
| | | | | | | | - Miron Sopic
- Faculty of Pharmacy, University of Belgrade, Serbia.
| | - Azra Guzonjic
- Faculty of Pharmacy, University of Belgrade, Serbia.
| | - Ana Ninic
- Faculty of Pharmacy, University of Belgrade, Serbia.
| | - Sanja Erceg
- Faculty of Pharmacy, University of Belgrade, Serbia.
| | - Sergej M Ostojic
- Applied Bioenergetics Lab, Faculty of Sport and Physical Education, University of Novi Sad, Serbia.
| |
Collapse
|