1
|
Cheng YT, Xin GK, Wang YL, Tan FY, Yuan L, Zhang Y, Liu Y, Ni CP. The current status of apathy in patients with dementia and its factors: A systematic review. Geriatr Nurs 2024; 58:290-297. [PMID: 38848610 DOI: 10.1016/j.gerinurse.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 06/09/2024]
Abstract
OBJECTIVE To systematically evaluate the current status of apathy in dementia patients and its associated factors. METHODS We searched Chinese and English databases to collect studies on the associated factors of apathy in patients with dementia from inception to March 14, 2023. Two researchers independently screened the literature, evaluated the quality, and extracted the data RESULTS: A total of 20 studies were included, and the incidence of apathy in patients with dementia ranged from 21 % to 90 %. According to the model of apathy proposed by Massimo in 2018, the associated factors were divided into individual factors for dementia patients, caregiver factors, and environmental factors. The individual factors of apathy in patients with dementia mainly include demographic characteristics, the severity of cognitive impairment, a combination of other behavioral and psychological symptoms of dementia, acute medical problems or adverse drug reactions, unmet needs, and malnutrition. Caregiver factors mainly include emotional expressions of hostility or criticism towards dementia patients and caregivers' expectations for a better life in the future. Environmental factors mainly include too high or too low stimulation and a lack of daytime activities CONCLUSIONS: Existing studies have shown that the incidence of apathy in dementia patients is high and is affected by multi-dimensional factors. There are more studies on individual factors in dementia patients and fewer studies on caregivers and environmental factors. In the future, a large number of high-quality studies are needed to demonstrate the mechanism of apathy in dementia patients and to find more related factors.
Collapse
Affiliation(s)
- Yue-Tong Cheng
- Department of Nursing, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China; School of Nursing, China Medical University, Shenyang, Liaoning Province, PR China
| | - Gong-Kai Xin
- School of Nursing, China Medical University, Shenyang, Liaoning Province, PR China
| | - Ye-Lv Wang
- School of Nursing, China Medical University, Shenyang, Liaoning Province, PR China
| | - Feng-Ying Tan
- School of Nursing, China Medical University, Shenyang, Liaoning Province, PR China
| | - Lei Yuan
- School of Nursing, China Medical University, Shenyang, Liaoning Province, PR China
| | - Yu Zhang
- School of Nursing, China Medical University, Shenyang, Liaoning Province, PR China; Department of Nephrology, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, PR China
| | - Yu Liu
- School of Nursing, China Medical University, Shenyang, Liaoning Province, PR China
| | - Cui-Ping Ni
- School of Nursing, China Medical University, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
2
|
Kreshpa W, Raffa S, Girtler N, Brugnolo A, Mattioli P, Orso B, Calizzano F, Arnaldi D, Peira E, Chincarini A, Tagliafico L, Monacelli F, Calcagno P, Serafini G, Gotta F, Mandich P, Pretta S, Del Sette M, Sofia L, Sambuceti G, Morbelli S, Schenone A, Massa F, Pardini M. Limbic Network Derangement Mediates Unawareness of Apathy in Mild Cognitive Impairment due to Alzheimer's Disease: Clues from [18F]FDG PET Voxel-Wise Analysis. J Alzheimers Dis 2024; 101:475-485. [PMID: 39240639 DOI: 10.3233/jad-240430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Background Discrepancy between caregiver and patient assessments of apathy in mild cognitive impairment (MCI) is considered an index of apathy unawareness, independently predicting progression to AD dementia. However, its neural underpinning are uninvestigated. Objective To explore the [18F]FDG PET-based metabolic correlates of apathy unawareness measured through the discrepancy between caregiver and patient self-report, in patients diagnosed with MCI. Methods We retrospectively studied 28 patients with an intermediate or high likelihood of MCI-AD, progressed to dementia over an average of two years, whose degree of apathy was evaluated by means of the Apathy Evaluation Scale (AES) for both patients (PT-AES) and caregivers (CG-AES). Voxel-based analysis at baseline was used to obtain distinct volumes of interest (VOIs) correlated with PT-AES, CG-AES, or their absolute difference (DISCR-AES). The resulting DISCR-AES VOI count densities were used as covariates in an inter-regional correlation analysis (IRCA) in MCI-AD patients and a group of matched healthy controls (HC). Results DISCR-AES negatively correlated with metabolism in bilateral parahippocampal gyrus, posterior cingulate cortex, and thalamus, PT-AES score with frontal and anterior cingulate areas, while there was no significant correlation between CG-AES and brain metabolism. IRCA revealed that MCI-AD patients exhibited reduced metabolic/functional correlations of the DISCR-AES VOI with the right cingulate gyrus and its anterior projections compared to HC. Conclusions Apathy unawareness entails early disruption of the limbic circuitry rather than the classical frontal-subcortical pathways typically associated with apathy. This reaffirms apathy unawareness as an early and independent measure in MCI-AD, marked by distinct pathophysiological alterations.
Collapse
Affiliation(s)
- Wendy Kreshpa
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Stefano Raffa
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Nicola Girtler
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Andrea Brugnolo
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Pietro Mattioli
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Beatrice Orso
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Francesco Calizzano
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | - Dario Arnaldi
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Enrico Peira
- National Institute of Nuclear Physics (INFN), Genoa section, Genoa, Italy
| | - Andrea Chincarini
- National Institute of Nuclear Physics (INFN), Genoa section, Genoa, Italy
| | - Luca Tagliafico
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine (DIMI), University of Genoa, Italy
| | - Fiammetta Monacelli
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Internal Medicine (DIMI), University of Genoa, Italy
| | - Pietro Calcagno
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Gianluca Serafini
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Fabio Gotta
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Mandich
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | | | | | - Luca Sofia
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Gianmario Sambuceti
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
- Department of Health Sciences (DISSAL), University of Genoa, Genoa, Italy
| | - Silvia Morbelli
- Department of Medical Science, Università degli studi di Torino, Turin, Italy
- Nuclear Medicine Unit, Città della Salute e della Scienza di Torino, Turin, Italy
| | - Angelo Schenone
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Federico Massa
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Matteo Pardini
- Department of Neuroscience, Rehabilitation, Ophtalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
3
|
Kosel F, Hartley MR, Franklin TB. Aberrant Cortical Activity in 5xFAD Mice in Response to Social and Non-Social Olfactory Stimuli. J Alzheimers Dis 2024; 97:659-677. [PMID: 38143360 DOI: 10.3233/jad-230858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2023]
Abstract
BACKGROUND Neuroimaging studies investigating the behavioral and psychological symptoms of dementia (BPSD)- such as apathy, anxiety, and depression- have linked some of these symptoms with altered neural activity. However, inconsistencies in operational definitions and rating scales, limited scope of assessments, and poor temporal resolution of imaging techniques have hampered human studies. Many transgenic (Tg) mouse models of Alzheimer's disease (AD) exhibit BPSD-like behaviors concomitant with AD-related neuropathology, allowing examination of how neural activity may relate to BPSD-like behaviors with high temporal and spatial resolution. OBJECTIVE To examine task-dependent neural activity in the medial prefrontal cortex (mPFC) of AD-model mice in response to social and non-social olfactory stimuli. METHODS We previously demonstrated age-related decreases in social investigation in Tg 5xFAD females, and this reduced social investigation is evident in Tg 5xFAD females and males by 6 months of age. In the present study, we examine local field potential (LFP) in the mPFC of awake, behaving 5xFAD females and males at 6 months of age during exposure to social and non-social odor stimuli in a novel olfactometer. RESULTS Our results indicate that Tg 5xFAD mice exhibit aberrant baseline and task-dependent LFP activity in the mPFC- including higher relative delta (1-4 Hz) band power and lower relative power in higher bands, and overall stronger phase-amplitude coupling- compared to wild-type controls. CONCLUSIONS These results are consistent with previous human and animal studies examining emotional processing, anxiety, fear behaviors, and stress responses, and suggest that Tg 5xFAD mice may exhibit altered arousal or anxiety.
Collapse
Affiliation(s)
- Filip Kosel
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, NS, Canada
| | - Mackenzie Rae Hartley
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, NS, Canada
| | - Tamara Brook Franklin
- Department of Psychology and Neuroscience, Faculty of Science, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
4
|
Gholami A. Alzheimer's disease: The role of proteins in formation, mechanisms, and new therapeutic approaches. Neurosci Lett 2023; 817:137532. [PMID: 37866702 DOI: 10.1016/j.neulet.2023.137532] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/03/2023] [Accepted: 10/18/2023] [Indexed: 10/24/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurological disorder that affects the central nervous system (CNS), leading to memory and cognitive decline. In AD, the brain experiences three main structural changes: a significant decrease in the quantity of neurons, the development of neurofibrillary tangles (NFT) composed of hyperphosphorylated tau protein, and the formation of amyloid beta (Aβ) or senile plaques, which are protein deposits found outside cells and surrounded by dystrophic neurites. Genetic studies have identified four genes associated with autosomal dominant or familial early-onset AD (FAD): amyloid precursor protein (APP), presenilin 1 (PS1), presenilin 2 (PS2), and apolipoprotein E (ApoE). The formation of plaques primarily involves the accumulation of Aβ, which can be influenced by mutations in APP, PS1, PS2, or ApoE genes. Mutations in the APP and presenilin (PS) proteins can cause an increased amyloid β peptides production, especially the further form of amyloidogenic known as Aβ42. Apart from genetic factors, environmental factors such as cytokines and neurotoxins may also have a significant impact on the development and progression of AD by influencing the formation of amyloid plaques and intracellular tangles. Exploring the causes and implications of protein aggregation in the brain could lead to innovative therapeutic approaches. Some promising therapy strategies that have reached the clinical stage include using acetylcholinesterase inhibitors, estrogen, nonsteroidal anti-inflammatory drugs (NSAIDs), antioxidants, and antiapoptotic agents. The most hopeful therapeutic strategies involve inhibiting activity of secretase and preventing the β-amyloid oligomers and fibrils formation, which are associated with the β-amyloid fibrils accumulation in AD. Additionally, immunotherapy development holds promise as a progressive therapeutic approach for treatment of AD. Recently, the two primary categories of brain stimulation techniques that have been studied for the treatment of AD are invasive brain stimulation (IBS) and non-invasive brain stimulation (NIBS). In this article, the amyloid proteins that play a significant role in the AD formation, the mechanism of disease formation as well as new drugs utilized to treat of AD will be reviewed.
Collapse
Affiliation(s)
- Amirreza Gholami
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
5
|
Basha S, Mukunda DC, Rodrigues J, Gail D'Souza M, Gangadharan G, Pai AR, Mahato KK. A comprehensive review of protein misfolding disorders, underlying mechanism, clinical diagnosis, and therapeutic strategies. Ageing Res Rev 2023; 90:102017. [PMID: 37468112 DOI: 10.1016/j.arr.2023.102017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 07/14/2023] [Accepted: 07/14/2023] [Indexed: 07/21/2023]
Abstract
INTRODUCTION Proteins are the most common biological macromolecules in living system and are building blocks of life. They are extremely dynamic in structure and functions. Due to several modifications, proteins undergo misfolding, leading to aggregation and thereby developing neurodegenerative and systemic diseases. Understanding the pathology of these diseases and the techniques used to diagnose them is therefore crucial for their effective management . There are several techniques, currently being in use to diagnose them and those will be discussed in this review. AIM/OBJECTIVES Current review aims to discuss an overview of protein aggregation and the underlying mechanisms linked to neurodegeneration and systemic diseases. Also, the review highlights protein misfolding disorders, their clinical diagnosis, and treatment strategies. METHODOLOGY Literature related to neurodegenerative and systemic diseases was explored through PubMed, Google Scholar, Scopus, and Medline databases. The keywords used for literature survey and analysis are protein aggregation, neurodegenerative disorders, Alzheimer's disease, Parkinson's disease, systemic diseases, protein aggregation mechanisms, etc. DISCUSSION /CONCLUSION: This review summarises the pathogenesis of neurodegenerative and systemic disorders caused by protein misfolding and aggregation. The clinical diagnosis and therapeutic strategies adopted for the management of these diseases are also discussed to aid in a better understanding of protein misfolding disorders. Many significant concerns about the role, characteristics, and consequences of protein aggregates in neurodegenerative and systemic diseases are not clearly understood to date. Regardless of technological advancements, there are still great difficulties in the management and cure of these diseases. Therefore, for better understanding, diagnosis, and treatment of neurodegenerative and systemic diseases, more studies to identify novel drugs that may aid in their treatment and management are required.
Collapse
Affiliation(s)
- Shaik Basha
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | | | - Jackson Rodrigues
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Meagan Gail D'Souza
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Gireesh Gangadharan
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Aparna Ramakrishna Pai
- Department of Neurology, Kasturba Medical College - Manipal, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Krishna Kishore Mahato
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
6
|
Warren SL, Hamza EA, Tindle R, Reid E, Whitfield P, Doumit A, Moustafa AA. Common Neuropsychiatric S ymptoms in Alzheimer's Disease, Mild Cognitive Impairment, and Subjective Memory Complaints: A Unified Framework. Curr Alzheimer Res 2023; 20:459-470. [PMID: 37873914 DOI: 10.2174/0115672050255489231012072014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/15/2023] [Accepted: 08/15/2023] [Indexed: 10/25/2023]
Abstract
The Alzheimer's disease (AD) continuum is a unique spectrum of cognitive impairment that typically involves the stages of subjective memory complaints (SMC), mild cognitive impairment (MCI), and AD dementia. Neuropsychiatric symptoms (NPS), such as apathy, anxiety, stress, and depression, are highly common throughout the AD continuum. However, there is a dearth of research on how these NPS vary across the AD continuum, especially SMC. There is also disagreement on the effects of specific NPS on each stage of the AD continuum due to their collinearity with other NPS, cognitive decline, and environmental factors (e.g., stress). In this article, we conduct a novel perspective review of the scientific literature to understand the presence of NPS across the AD continuum. Specifically, we review the effects of apathy, depression, anxiety, and stress in AD, MCI, and SMC. We then build on this knowledge by proposing two theories of NPS' occurrence across the AD continuum. Consequently, we highlight the current landscape, limitations (e.g., differing operationalization), and contentions surrounding the NPS literature. We also outline theories that could clear up contention and inspire future NPS research.
Collapse
Affiliation(s)
- Samuel L Warren
- School of Psychology, Faculty of Society and Design, Bond University, Gold Coast, Queensland, Australia
| | - Eid Abo Hamza
- Faculty of Education, Tanta University, Tanta, Egypt
- College of Education, Humanities & Social Sciences, Al Ain University, Al Ain, UAE
| | - Richard Tindle
- School of Psychology, University of Sunshine Coast, Sunshine Coast, Queensland, Australia
| | - Edwina Reid
- School of Psychology, Western Sydney University, Sydney, New South Wales, Australia
| | - Paige Whitfield
- School of Psychology, Western Sydney University, Sydney, New South Wales, Australia
| | - Adam Doumit
- School of Psychology, Western Sydney University, Sydney, New South Wales, Australia
| | - Ahmed A Moustafa
- School of Psychology, Faculty of Society and Design, Bond University, Gold Coast, Queensland, Australia
- Department of Human Anatomy and Physiology, The Faculty of Health Sciences, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|