1
|
Bai H, Zuo X, Zhao C, Zhang S, Feng X. Non-nutritive Sweetener Aspartame Disrupts Circadian Behavior and Causes Memory Impairment in Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23478-23492. [PMID: 39382230 DOI: 10.1021/acs.jafc.4c05394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
As a non-nutritive sweetener, aspartame is widely used in everyday life. However, its safety is highly controversial, especially its effects on neurobehavior. We evaluated the effects of chronic daily oral administration of aspartame-containing drinking water (at doses equivalent to 7-28% of the FDA-recommended human DIV) on memory and rhythm behaviors in mice and further investigated changes at the molecular level in the brains. Our results demonstrated that mice exposed to aspartame exhibited memory impairment. Disorders of hippocampal neurotransmitter metabolism and pathological damage may be responsible for the aspartame-induced memory impairment via inhibition of the BDNF/TrkB pathway. Furthermore, our findings suggested that disturbed clock gene expression in the hypothalamus after aspartame exposure led to altered rest-activity behavior, and this disruption of the circadian rhythm may exacerbate memory impairment. This study highlights the negative neurobehavioral effects of aspartame and provides valuable insights into its rational and safe use.
Collapse
Affiliation(s)
- Huijuan Bai
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xiang Zuo
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Chengtian Zhao
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Shuhui Zhang
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| | - Xizeng Feng
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, Nankai University, Tianjin 300071, China
| |
Collapse
|
2
|
Yang J, Yu B, Zheng J. Natural herbal extract roles and mechanisms in treating cerebral ischemia: A systematic review. Front Pharmacol 2024; 15:1424146. [PMID: 39156109 PMCID: PMC11327066 DOI: 10.3389/fphar.2024.1424146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/03/2024] [Indexed: 08/20/2024] Open
Abstract
Background Stroke has been the focus of medical research due to its serious consequences and sequelae. Among the tens of millions of new stroke patients every year, cerebral ischemia patients account for the vast majority. While cerebral ischemia drug research and development is still ongoing, most drugs are terminated at preclinical stages due to their unacceptable toxic side effects. In recent years, natural herbs have received considerable attention in the pharmaceutical research and development field due to their low toxicity levels. Numerous studies have shown that natural herbs exert actions that cannot be ignored when treating cerebral ischemia. Methods We reviewed and summarized the therapeutic effects and mechanisms of different natural herbal extracts on cerebral ischemia to promote their application in this field. We used keywords such as "natural herbal extract," "herbal medicine," "Chinese herbal medicine" and "cerebral ischemia" to comprehensively search PubMed, ScienceDirect, ScienceNet, CNKI, and Wanfang databases, after which we conducted a detailed screening and review strategy. Results We included 120 high-quality studies up to 10 January 2024. Natural herbal extracts had significant roles in cerebral ischemia treatments via several molecular mechanisms, such as improving regional blood flow disorders, protecting the blood-brain barrier, and inhibiting neuronal apoptosis, oxidative stress and inflammatory responses. Conclusion Natural herbal extracts are represented by low toxicity and high curative effects, and will become indispensable therapeutic options in the cerebral ischemia treatment field.
Collapse
Affiliation(s)
| | | | - Jian Zheng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Wang L, Peng T, Deng J, Gao W, Wang H, Junhong Luo O, Huang L, Chen G. Nicotinamide riboside alleviates brain dysfunction induced by chronic cerebral hypoperfusion via protecting mitochondria. Biochem Pharmacol 2024; 225:116272. [PMID: 38723719 DOI: 10.1016/j.bcp.2024.116272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 05/14/2024]
Abstract
Chronic cerebral hypoperfusion (CCH) is an enduring inadequate blood flow to the brain, resulting in vascular dementia (VaD). However, the effective treatment strategies are lacking. Supplementing with nicotinamide adenine dinucleotide (NAD+) has shown neuroprotective benefits in other neurodegenerative disorders. Nicotinamide riboside (NR), as a precursor of NAD+, is believed to hold promise in improving mitochondrial health, autophagy, and cognitive function. Meanwhile, NR has unique oral bioavailability, good tolerability, and minimal side effects, and it is the most promising for clinical translation. However, the effectiveness of NR in treating CCH-related VaD is still uncertain. The present study examined the neuroprotective effects of NR supplementation and its underlying mechanisms in a CCH rat model. The rats with CCH were given NR at a daily dosage of 400 mg/kg for 3 months. NR supplementation increased blood and brain NAD+ levels and improved brain function in CCH rats, including cognitive function and oxygenation capacity. It also reduced hippocampal neuronal loss and abnormalities and mitigated the decrease in dendritic spine density. The analysis of RNA sequencing in hippocampal tissue supports these findings. Electron microscopy and protein detection results suggest that NR may maintain mitochondrial structural integrity and exert a protective role by attenuating mitochondrial fission and impaired autophagy flux caused by CCH. In conclusion, these findings offer evidence for the neuroprotective potential of NR supplementation in ameliorating cognitive impairment induced by CCH.
Collapse
Affiliation(s)
- Lina Wang
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Department of Microbiology and Immunology, School of Medicine, Institute of Geriatric Immunology, Jinan University, Guangzhou 510632, China
| | - Tianchan Peng
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Department of Microbiology and Immunology, School of Medicine, Institute of Geriatric Immunology, Jinan University, Guangzhou 510632, China
| | - Jieping Deng
- Department of Microbiology and Immunology, School of Medicine, Institute of Geriatric Immunology, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou 510632, China
| | - Wen Gao
- Department of Microbiology and Immunology, School of Medicine, Institute of Geriatric Immunology, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou 510632, China
| | - Haoyun Wang
- Department of Microbiology and Immunology, School of Medicine, Institute of Geriatric Immunology, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou 510632, China
| | - Oscar Junhong Luo
- Department of Microbiology and Immunology, School of Medicine, Institute of Geriatric Immunology, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou 510632, China
| | - Li'an Huang
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China.
| | - Guobing Chen
- Department of Neurology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, China; Department of Microbiology and Immunology, School of Medicine, Institute of Geriatric Immunology, Jinan University, Guangzhou 510632, China; Key Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou 510632, China; Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou 510632, China.
| |
Collapse
|
4
|
Ahad MA, Chear NJY, Abdullah MH, Ching-Ga TAF, Liao P, Wei S, Murugaiyah V, Hassan Z. Effects of clitorienolactones from Clitoria ternatea root on calcium channel mediating hippocampal long-term potentiation in rats induced chronic cerebral hypoperfusion. Ageing Res Rev 2024; 96:102252. [PMID: 38442748 DOI: 10.1016/j.arr.2024.102252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/19/2024] [Accepted: 02/25/2024] [Indexed: 03/07/2024]
Abstract
Chronic cerebral hypoperfusion (CCH) is a common mechanism of acute brain injury due to impairment of blood flow to the brain. Moreover, a prolonged lack of oxygen supply may result in cerebral infarction or global ischemia, which subsequently causes long-term memory impairment. Research on using Clitoria ternatea root extract for treating long-term memory has been studied extensively. However, the bioactive compound contributing to its neuroprotective effects remains uncertain. In the present study, we investigate the effects of clitorienolactone A (CLA) and B (CLB) from the roots of Clitoria ternatea extract on hippocampal neuroplasticity in rats induced by CCH. CLA and CLB were obtained using column chromatography. The rat model of CCH was induced using two-vessel occlusion surgery (2VO). The 2VO rats were given 10 mg/kg of CLA and CLB orally, followed by hippocampal neuroplasticity recording using in vivo electrophysiological. Rats received CLA and CLB (10 mg/kg) significantly reversed the impairment of long-term potentiation following 2VO surgery. Furthermore, we investigate the effect of CLA and CLB on the calcium channel using the calcium imaging technique. During hypoxia, CLA and CLB sustain the increase in intracellular calcium levels. We next predict the binding interactions of CLA and CLB against NMDA receptors containing GluN2A and GluN2B subunits using in silico molecular docking. Our result found that both CLA and CLB exhibited lower binding affinity against GluN2A and GluN2B subunits. Our findings demonstrated that bioactive compounds from Clitoria ternatea improved long-term memory deficits in the chronic cerebral hypoperfusion rat model via calcium uptake. Hence, CLA and CLB could be potential therapeutic tools for treating cognitive dysfunction.
Collapse
Affiliation(s)
- Mohamad Anuar Ahad
- Centre for Drug Research, Universiti Sains Malaysia, Penang Gelugor, Malaysia; Department of Basic Health Sciences, Faculty of Pharmacy and Biomedical Sciences, MAHSA University, Bandar Saujana Putra, Selangor, Malaysia
| | | | | | | | - Ping Liao
- Calcium Signaling Laboratory, National Neuroscience Institute, Singapore.
| | - Shunhui Wei
- Calcium Signaling Laboratory, National Neuroscience Institute, Singapore
| | - Vikneswaran Murugaiyah
- Centre for Drug Research, Universiti Sains Malaysia, Penang Gelugor, Malaysia; Discipline of Pharmacology, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Gelugor, Malaysia
| | - Zurina Hassan
- Centre for Drug Research, Universiti Sains Malaysia, Penang Gelugor, Malaysia.
| |
Collapse
|