1
|
Buddhiraju A, Shimizu MR, Seo HH, Chen TLW, RezazadehSaatlou M, Huang Z, Kwon YM. Generalizability of machine learning models predicting 30-day unplanned readmission after primary total knee arthroplasty using a nationally representative database. Med Biol Eng Comput 2024; 62:2333-2341. [PMID: 38558351 DOI: 10.1007/s11517-024-03075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024]
Abstract
Unplanned readmission after primary total knee arthroplasty (TKA) costs an average of US $39,000 per episode and negatively impacts patient outcomes. Although predictive machine learning (ML) models show promise for risk stratification in specific populations, existing studies do not address model generalizability. This study aimed to establish the generalizability of previous institutionally developed ML models to predict 30-day readmission following primary TKA using a national database. Data from 424,354 patients from the ACS-NSQIP database was used to develop and validate four ML models to predict 30-day readmission risk after primary TKA. Individual model performance was assessed and compared based on discrimination, accuracy, calibration, and clinical utility. Length of stay (> 2.5 days), body mass index (BMI) (> 33.21 kg/m2), and operation time (> 93 min) were important determinants of 30-day readmission. All ML models demonstrated equally good accuracy, calibration, and discriminatory ability (Brier score, ANN = RF = HGB = NEPLR = 0.03; ANN, slope = 0.90, intercept = - 0.11; RF, slope = 0.93, intercept = - 0.12; HGB, slope = 0.90, intercept = - 0.12; NEPLR, slope = 0.77, intercept = 0.01; AUCANN = AUCRF = AUCHGB = AUCNEPLR = 0.78). This study validates the generalizability of four previously developed ML algorithms in predicting readmission risk in patients undergoing TKA and offers surgeons an opportunity to reduce readmissions by optimizing discharge planning, BMI, and surgical efficiency.
Collapse
Affiliation(s)
- Anirudh Buddhiraju
- Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Michelle Riyo Shimizu
- Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Henry Hojoon Seo
- Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Tony Lin-Wei Chen
- Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
- Department of Biomedical Engineering, Faculty of Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong SAR, China
| | - MohammadAmin RezazadehSaatlou
- Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Ziwei Huang
- Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Young-Min Kwon
- Bioengineering Laboratory, Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA.
| |
Collapse
|
2
|
Piponov H, Acquarulo B, Ferreira A, Myrick K, Halawi MJ. Outpatient Total Joint Arthroplasty: Are We Closing the Racial Disparities Gap? J Racial Ethn Health Disparities 2023; 10:2320-2326. [PMID: 36100812 DOI: 10.1007/s40615-022-01411-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/28/2022]
Abstract
INTRODUCTION As ne arly half of all total joint arthroplasty (TJA) procedures are projected to be performed in the outpatient setting by 2026, the impact of this trend on health disparities remains to be explored. This study investigated the racial/ethnic differences in the proportion of TJA performed as outpatient as well as the impact of outpatient surgery on 30-day complication and readmission rates. METHODS The ACS National Surgical Quality Improvement Program was retrospectively reviewed for all patients who underwent primary, elective total hip and knee arthroplasty (THA, TKA) between 2011 and 2018. The proportion of TJA performed as an outpatient, 30-day complications, and 30-day readmission among African American, Hispanic, Asian, Native American/Alaskan, and Hawaiian/Pacific Islander patients were each compared to White patients (control group). Analyses were performed for each racial/ethnic group separately. A general linear model (GLM) was used to calculate the odds ratios for receiving TJA in an outpatient vs. inpatient setting while adjusting for age, gender, body mass index (BMI), functional status, and comorbidities. RESULTS In total, 170,722 THAs and 285,920 TKAs were analyzed. Compared to White patients, non-White patients had higher likelihood of THA or TKA performed as an outpatient (OR 1.31 and 1.24 respectively for African American patients, OR 1.65 and 1.76 respectively for Hispanic patients, and OR 1.66 and 1.59 respectively for Asian patients, p < 0.001). Outpatient surgery did not lead to increased complications in any of the study groups compared to inpatient surgery (p > 0.05). However, readmission rates were significantly higher for outpatient TKA in all the study groups compared to inpatient TKA (OR range 2.47-10.15, p < 0.001). Complication and readmission rates were similar between inpatient and outpatient THA for all the study groups. CONCLUSION While this study demonstrated higher proportion of TJA performed as an outpatient among most non-White racial/ethnic groups, this observation should be tempered with the increased readmission rates observed in outpatient TKA, which could further the disparities gap in health outcomes.
Collapse
Affiliation(s)
- Hristo Piponov
- Department of Orthopaedic Surgery, Baylor College of Medicine, 7200 Cambridge Street, Suite 10A, Houston, TX, 77030, USA
| | - Blake Acquarulo
- Frank H Netter MD School of Medicine at Quinnipiac University, Hamden, CT, USA
| | | | - Karen Myrick
- Frank H Netter MD School of Medicine at Quinnipiac University, Hamden, CT, USA
- Department of Nursing, University of Saint Joseph, School of Interdisciplinary Health and Science, West Hartford, CT, USA
| | - Mohamad J Halawi
- Department of Orthopaedic Surgery, Baylor College of Medicine, 7200 Cambridge Street, Suite 10A, Houston, TX, 77030, USA.
| |
Collapse
|
3
|
Entezari B, Koucheki R, Abbas A, Toor J, Wolfstadt JI, Ravi B, Whyne C, Lex JR. Improving Resource Utilization for Arthroplasty Care by Leveraging Machine Learning and Optimization: A Systematic Review. Arthroplast Today 2023; 20:101116. [PMID: 36938350 PMCID: PMC10014272 DOI: 10.1016/j.artd.2023.101116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/28/2023] [Indexed: 03/21/2023] Open
Abstract
Background There is a growing demand for total joint arthroplasty (TJA) surgery. The applications of machine learning (ML), mathematical optimization, and computer simulation have the potential to improve efficiency of TJA care delivery through outcome prediction and surgical scheduling optimization, easing the burden on health-care systems. The purpose of this study was to evaluate strategies using advances in analytics and computational modeling that may improve planning and the overall efficiency of TJA care. Methods A systematic review including MEDLINE, Embase, and IEEE Xplore databases was completed from inception to October 3, 2022, for identification of studies generating ML models for TJA length of stay, duration of surgery, and hospital readmission prediction. A scoping review of optimization strategies in elective surgical scheduling was also conducted. Results Twenty studies were included for evaluating ML predictions and 17 in the scoping review of scheduling optimization. Among studies generating linear or logistic control models alongside ML models, only 1 found a control model to outperform its ML counterpart. Furthermore, neural networks performed superior to or at the same level as conventional ML models in all but 1 study. Implementation of mathematical and simulation strategies improved the optimization efficiency when compared to traditional scheduling methods at the operational level. Conclusions High-performing predictive ML-based models have been developed for TJA, as have mathematical strategies for elective surgical scheduling optimization. By leveraging artificial intelligence for outcome prediction and surgical optimization, there exist greater opportunities for improved resource utilization and cost-savings in TJA than when using traditional modeling and scheduling methods.
Collapse
Affiliation(s)
- Bahar Entezari
- Granovsky Gluskin Division of Orthopaedics, Mount Sinai Hospital, Toronto, Ontario, Canada
- Queen’s University School of Medicine, Kingston, Ontario, Canada
- Corresponding author. Mount Sinai Hospital, 15 Arch Street, Kingston, Ontario, Canada K7L 3N6. Tel.: +1 647 866 8729.
| | - Robert Koucheki
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Aazad Abbas
- Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Jay Toor
- Division of Orthopaedic Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Jesse I. Wolfstadt
- Granovsky Gluskin Division of Orthopaedics, Mount Sinai Hospital, Toronto, Ontario, Canada
- Division of Orthopaedic Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bheeshma Ravi
- Division of Orthopaedic Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Orthopaedic Surgery, Holland Bone and Joint Program, Sunnybrook Health Science Centre, Toronto, Ontario, Canada
| | - Cari Whyne
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Division of Orthopaedic Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Division of Orthopaedic Surgery, Holland Bone and Joint Program, Sunnybrook Health Science Centre, Toronto, Ontario, Canada
| | - Johnathan R. Lex
- Orthopaedic Biomechanics Lab, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Division of Orthopaedic Surgery, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|