1
|
Sun R, Vats K, Jn Baptiste J, Adeeb S, Jomha N, Westover L. Comparison of wear on articular cartilage by titanium alloy, ultra-high-molecular-weight polyethylene, and carbon fibre reinforced polyether-ether-ketone: A pilot study. Med Eng Phys 2023; 120:104042. [PMID: 37838396 DOI: 10.1016/j.medengphy.2023.104042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 10/16/2023]
Abstract
Artificial implant materials may articulate against native articular cartilage in certain clinical scenarios and the selection of an implant material that results in the least wear on articular cartilage is preferred to maintain normal joint architecture and function. This project compared the wear on porcine femoral condyles induced by articulation against porcine patellae, titanium alloy (Ti6Al4V), ultra high molecular weight polyethylene (UHMWPE), and carbon fibre reinforced polyether-ether-ketone (CFR-PEEK) through an ex vivo experimental setup. A sinusoidal compressive load of 30-160 N, representing an approximate joint pressure of 0.19-1 MPa at a frequency of 3 Hz coupled with a rotational displacement of +/- 10⁰ at 3 Hz was used to simulate physiological joint motion. Wear was characterized via gross examination and histologically using the OARSI scoring system after 43,200 cycles. CFR-PEEK resulted in the most significant wear on articular cartilage compared to titanium alloy and UHMWPE whereas titanium alloy and UHMWPE resulted in similar levels of wear. All materials caused more wear compared to cartilage-on-cartilage testing. The wear mechanism was characterized by progressive loss of proteoglycan content in cartilage in histology samples.
Collapse
Affiliation(s)
- Ruixiang Sun
- Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton AB Canada
| | - Karan Vats
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton AB Canada
| | - Jonelle Jn Baptiste
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton AB Canada
| | - Samer Adeeb
- Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton AB Canada
| | - Nadr Jomha
- Department of Surgery, Faculty of Medicine & Dentistry, University of Alberta, Edmonton AB Canada
| | - Lindsey Westover
- Department of Biomedical Engineering, Faculty of Engineering, University of Alberta, Edmonton AB Canada; Department of Mechanical Engineering, Faculty of Engineering, University of Alberta, Edmonton AB Canada.
| |
Collapse
|
2
|
Aşık EE, Damen AHA, van Hugten PPW, Roth AK, Thies JC, Emans PJ, Ito K, van Donkelaar CC, Pastrama M. Surface texture analysis of different focal knee resurfacing implants after 6 and 12 months in vivo in a goat model. J Orthop Res 2022; 40:2402-2413. [PMID: 35128715 PMCID: PMC9790236 DOI: 10.1002/jor.25274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/21/2021] [Accepted: 01/16/2022] [Indexed: 02/04/2023]
Abstract
The clinical success of osteochondral implants depends significantly on their surface properties. In vivo, an implant may roughen over time which can decrease its performance. The present study investigates whether changes in the surface texture of metal and two types of polycarbonate urethane (PCU) focal knee resurfacing implants (FKRIs) occurred after 6 and 12 months of in vivo articulation with native goat cartilage. PCU implants which differed in stem stiffness were compared to investigate whether the stem fixating the implant in the bone influences surface topography. Using optical profilometry, 19 surface texture parameters were evaluated, including spatial distribution and functional parameters obtained from the material ratio curve. For metal implants, wear during in vivo articulation occurred mainly via material removal, as shown by the significant decrease of the core-valley transition from 91.5% in unused implants to 90% and 89.6% after 6 and 12 months, respectively. Conversely, for PCU implants, the wear mechanism consisted in either filling of the valleys or flattening of the surface by dulling of sharp peaks. This was illustrated in the change in roughness skewness from negative to positive values over 12 months of in vivo articulation. Implants with a softer stem experienced the most deformation, shown by the largest change in material ratio curve parameters. We therefore showed, using a detailed surface profilometry analysis, that the surface texture of metal and two different PCU FKRIs changes in a different way after articulation against cartilage, revealing distinct wear mechanisms of different implant materials.
Collapse
Affiliation(s)
- Emin E. Aşık
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Alicia H. A. Damen
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Pieter P. W. van Hugten
- Department of Orthopaedic SurgeryMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Alex K. Roth
- Department of Orthopaedic SurgeryMaastricht University Medical CenterMaastrichtThe Netherlands
| | | | - Pieter J. Emans
- Department of Orthopaedic SurgeryMaastricht University Medical CenterMaastrichtThe Netherlands
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Corrinus C. van Donkelaar
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Maria Pastrama
- Orthopaedic Biomechanics, Department of Biomedical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| |
Collapse
|
3
|
Kellens J, Berger P, Vandenneucker H. Metal wear debris generation in primary total knee arthroplasty: is it an issue? Acta Orthop Belg 2021; 87:681-695. [PMID: 35172435 DOI: 10.52628/87.4.13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
More durable total knee arthroplasties (TKAs) are needed, due to the rising life expectancy, the higher activity levels of patients and the growing concerns about aseptic loosening being caused by metal hypersensitivity. In response, different hypoallergenic metal coatings have been developed for TKAs. However, possible adverse effects of these different metals (cobalt-chromium-molybdenum, zirconium, titanium and tantalum) have been neglected. The aim was to summarize the local and systemic adverse effects (including metal hypersensitivity), survival ratios, patient-reported outcome measures (PROMs) and the plasma metal ion concentrations of the different TKA coatings. A literature search on PubMed and EMBASE was performed. In total, 15 studies were found eligible. Common adverse effects of TKA were infection, loosening, pain, instability and hyper- coagulation disorders. Serious adverse effects related to TKA implants were not reported. The survival ratios and patient-reported outcome measures seem to confirm these good results. In contrast with chromium and cobalt, no significant differences were reported in the nickel, molybdenum and titanium concentrations. No significant differences between the hypoallergenic and standard TKA implants were found in terms of adverse effects, survival ratios and PROMs. A causal relationship between the common adverse effects and the different metals is unlikely. Due to the heterogeneity of the TKA implants used, no firm conclusions could be made. Further research with longer follow-up studies are needed to find possible adverse effects and differences. Thus far, the hypoallergenic implants seem to perform equal to the standard implants.
Collapse
|
4
|
Zhang X, Hu Y, Chen K, Zhang D. Bio-tribological behavior of articular cartilage based on biological morphology. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:132. [PMID: 34677698 PMCID: PMC8536562 DOI: 10.1007/s10856-021-06566-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Artificial hemiarthroplasty is one of the effective methods for the treatment of hip joint diseases, but the wear failure of the interface between the hemi hip joint material and articular cartilage restricts the life of the prosthesis. Therefore, it is important to explore the damage mechanism between the interfaces to prolong the life of the prosthesis and improve the life quality of the prosthesis replacement. In this paper, the creep and bio-tribological properties of cartilage against PEEK, CoCrMo alloy, and ceramic were studied, and the tribological differences between "hard-soft" and "soft-soft" contact were analyzed based on biomorphology. The results showed that with the increase of time in vitro, the thickness of the cartilage membrane decreased, the surface damage was aggravated, and the anti-creep ability of cartilage was weakened. Second, the creep resistance of the soft-soft contact pair was better than that of the hard-soft contact pair. Also, the greater the load and the longer the wear time, the more serious the cartilage damage. Among the three friction pairs, the cartilage in PEEK/articular cartilage was the least damaged, followed by CoCrMo alloy/articular cartilage, and the most damage was found in ceramic/articular, indicating that the soft-soft friction pair inflicted the least damage to the cartilage.
Collapse
Affiliation(s)
- Xinyue Zhang
- School of Mechatronic Engineering, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Yi Hu
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, People's Republic of China
| | - Kai Chen
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, People's Republic of China.
| | - Dekun Zhang
- School of Materials and Physics, China University of Mining and Technology, Xuzhou, Jiangsu, 221116, People's Republic of China.
| |
Collapse
|
5
|
West TA, Rush SM. Total Talus Replacement: Case Series and Literature Review. J Foot Ankle Surg 2021; 60:187-193. [PMID: 33218861 DOI: 10.1053/j.jfas.2020.08.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/23/2020] [Indexed: 02/03/2023]
Abstract
Custom 3D printed total talus implants have been used successfully as a functional alternative to arthrodesis or amputation in cases of severe talar destruction or loss. However, the ideal material and construct still remains to be elucidated. Current models have been made from aluminum ceramic, cobalt chrome, stainless steel, titanium, or metal combinations. The implants may be constrained (subtalar arthrodesis) or unconstrained (press fit within mortise). They may also be combined with a tibial prosthesis or used in isolation. The majority of currently published case studies examine unconstrained and isolated implants. This case study presents satisfactory 1-y outcomes in 3 cobalt chrome constrained total talar implants used in combination with a tibial prosthesis, and a literature review of total talus replacements.
Collapse
Affiliation(s)
- Tenaya A West
- Podiatric Surgical Fellow, Silicon Valley Reconstructive Foot and Ankle Fellowship, Palo Alto Medical Foundation, Mountain View CA.
| | - Shannon M Rush
- Attending Surgeon, Tri-Valley Orthopedic Specialists, Pleasanton CA
| |
Collapse
|
6
|
Damen AHA, van Donkelaar CC, Cardinaels RM, Brandt JM, Schmidt TA, Ito K. Proteoglycan 4 reduces friction more than other synovial fluid components for both cartilage-cartilage and cartilage-metal articulation. Osteoarthritis Cartilage 2021; 29:894-904. [PMID: 33647390 DOI: 10.1016/j.joca.2021.02.566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/22/2021] [Accepted: 02/22/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The clinical success of focal metallic resurfacing implants depends largely on the friction between implant and opposing cartilage. Therefore, the present study determines the lubricating ability of the synovial fluid components hyaluronic acid (HA), proteoglycan 4 (PRG4) and a surface-active phospholipid (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, POPC), on the articulation between cartilage and a Cobalt Chromium Molybdenum (CoCrMo) implant surface, compared with two cartilage surfaces. METHODS A ring-on-disk geometry was used to perform repeated friction measurements at physiologically relevant velocities (6 and 60 mm/s) using lubricants with an increasing number of components present. Shear measurements were performed in order to evaluate the viscosity. To ensure that it is clinically relevant to explore the effect of these components, the presence of PRG4 in synovial fluid obtained from primary and revision knee and hip implant surgeries was examined. RESULTS PRG4 in the presence of HA was found to significantly reduce the coefficient of friction for both cartilage-cartilage and cartilage-CoCrMo interface. This is relevant, as it was also demonstrated that PRG4 is still present at the time of revision surgeries. The addition of POPC had no effect for either configurations. HA increased the viscosity of the lubricating fluid by one order of magnitude, while PRG4 and POPC had no effect. CONCLUSION The present study demonstrates the importance of selecting the appropriate lubrication solution to evaluate implant materials with biotribology tests. Because PRG4 is a key component for reducing friction between cartilage and an opposing surface, developing coatings which bind PRG4 is recommended for cartilage resurfacing implants.
Collapse
Affiliation(s)
- A H A Damen
- Orthopaedic Biomechanics, Department Biomedical Engineering, Eindhoven University of Technology, the Netherlands
| | - C C van Donkelaar
- Orthopaedic Biomechanics, Department Biomedical Engineering, Eindhoven University of Technology, the Netherlands.
| | - R M Cardinaels
- Polymer Technology, Department Mechanical Engineering, Eindhoven University of Technology, the Netherlands
| | - J-M Brandt
- 4LinesFusion Inc., London, Ontario, Canada
| | - T A Schmidt
- Department Biomedical Engineering, University of Connecticut Health Center, Farmington, CT, USA
| | - K Ito
- Orthopaedic Biomechanics, Department Biomedical Engineering, Eindhoven University of Technology, the Netherlands
| |
Collapse
|
7
|
Damen AHA, Nickien M, Ito K, van Donkelaar CC. The performance of resurfacing implants for focal cartilage defects depends on the degenerative condition of the opposing cartilage. Clin Biomech (Bristol, Avon) 2020; 79:105052. [PMID: 32591239 DOI: 10.1016/j.clinbiomech.2020.105052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 04/08/2020] [Accepted: 05/15/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Non-degradable resurfacing implants are being developed for treatment of focal cartilage defects. Performance of these implants has been investigated opposing intact cartilage. This study investigates whether implants would perform equally well when the opposing cartilage is fibrillated. METHODS Human osteochondral strips (~2x1x1 cm) with a smooth (n = 9) or fibrillated (n = 17) cartilage surface were obtained from human tibial plateaus excised during total knee arthroscopy. A custom-made pin-on-plate sliding indenter was used to apply simultaneous compression (0.75-3 MPa) and movement (4 mm/s over 6 mm). Either metal implants, polycarbonate-urethane or healthy porcine osteochondral plugs with a diameter of 6 mm were used as indenter. FINDINGS Cartilage roughness of the osteochondral strips was significantly higher for the fibrillated than the smooth group prior to sliding-indentation. Roughness of the indenters was not significantly altered by sliding indentation using either smooth or fibrillated cartilage. For all but one sample, sliding of smooth cartilage against any of the indenter surfaces did not cause damage. However, samples with fibrillated cartilage showed varied responses from seemingly unaffected to severe tissue wear as quantified by analysis of Indian ink staining and histology. INTERPRETATION This study demonstrates that the opposing cartilage quality is relevant for the clinical success of implanting an artificial implant in a focal cartilage defect. Therefore it is essential to test the efficacy of newly developed implants against arthritic joint surfaces, and care should be taken when interpreting in vivo studies in which implants are inserted in healthy joints.
Collapse
Affiliation(s)
- A H A Damen
- Orthopaedic Biomechanics, Dept. of Biomedical Engineering, Eindhoven University of Technology, the Netherlands
| | - M Nickien
- Orthopaedic Biomechanics, Dept. of Biomedical Engineering, Eindhoven University of Technology, the Netherlands
| | - K Ito
- Orthopaedic Biomechanics, Dept. of Biomedical Engineering, Eindhoven University of Technology, the Netherlands
| | - C C van Donkelaar
- Orthopaedic Biomechanics, Dept. of Biomedical Engineering, Eindhoven University of Technology, the Netherlands.
| |
Collapse
|