1
|
Meier J, Hembus J, Bader R, Vogel D. Computer-based analysis of the taper connection strength of different revision head and adapter sleeve designs. BIOMED ENG-BIOMED TE 2024; 69:199-209. [PMID: 37698840 DOI: 10.1515/bmt-2023-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/28/2023] [Indexed: 09/13/2023]
Abstract
OBJECTIVES Ceramic revision heads, equipped with titanium adapter sleeves, are used in femoral head revision in total hip arthroplasty to avoid ceramic fracture due to the damaged taper. METHODS A finite element analysis of the taper connection strength of revision heads with varying head diameters combined with adapter sleeves of different lengths was conducted. The influence of various assembly forces, head diameter, and length of the adapter sleeves was evaluated. For two combinations, the pattern of contact pressure was evaluated when applying a simplified joint load (3 kN, 45° load angle). Experimental validation was conducted with 36 mm heads and adapter sleeves in size S, as well as 28 mm heads and adapter sleeves in size XL. RESULTS The pull-off force increased with higher assembly forces. Using larger head diameters and adapter sleeves led to decreased pull-off forces, a reduced contact surface, and less contact pressure. The contact pressure showed significant peaks and a diagonal pattern under 45° angle loading when assembly forces were less than 4 kN, and larger adapter sleeves were utilized. CONCLUSION A sufficient assembly force should be ensured intraoperatively, especially with an increasing head diameter and adapter sleeve size, as lower assembly forces might lead to reduced taper connection strength.
Collapse
Affiliation(s)
- Johanna Meier
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - Jessica Hembus
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - Rainer Bader
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| | - Danny Vogel
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, Rostock University Medical Center, Rostock, Germany
| |
Collapse
|
2
|
Soliman MM, Islam MT, Chowdhury MEH, Alqahtani A, Musharavati F, Alam T, Alshammari AS, Misran N, Soliman MS, Mahmud S, Khandakar A. Advancement in total hip implant: a comprehensive review of mechanics and performance parameters across diverse novelties. J Mater Chem B 2023; 11:10507-10537. [PMID: 37873807 DOI: 10.1039/d3tb01469j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
The UK's National Joint Registry (NJR) and the American Joint Replacement Registry (AJRR) of 2022 revealed that total hip replacement (THR) is the most common orthopaedic joint procedure. The NJR also noted that 10-20% of hip implants require revision within 1 to 10 years. Most of these revisions are a result of aseptic loosening, dislocation, implant wear, implant fracture, and joint incompatibility, which are all caused by implant geometry disparity. The primary purpose of this review article is to analyze and evaluate the mechanics and performance factors of advancement in hip implants with novel geometries. The existing hip implants can be categorized based on two parts: the hip stem and the joint of the implant. Insufficient stress distribution from implants to the femur can cause stress shielding, bone loss, excessive micromotion, and ultimately, implant aseptic loosening due to inflammation. Researchers are designing hip implants with a porous lattice and functionally graded material (FGM) stems, femur resurfacing, short-stem, and collared stems, all aimed at achieving uniform stress distribution and promoting adequate bone remodeling. Designing hip implants with a porous lattice FGM structure requires maintaining stiffness, strength, isotropy, and bone development potential. Mechanical stability is still an issue with hip implants, femur resurfacing, collared stems, and short stems. Hip implants are being developed with a variety of joint geometries to decrease wear, improve an angular range of motion, and strengthen mechanical stability at the joint interface. Dual mobility and reverse femoral head-liner hip implants reduce the hip joint's dislocation limits. In addition, researchers reveal that femoral headliner joints with unidirectional motion have a lower wear rate than traditional ball-and-socket joints. Based on research findings and gaps, a hypothesis is formulated by the authors proposing a hip implant with a collared stem and porous lattice FGM structure to address stress shielding and micromotion issues. A hypothesis is also formulated by the authors suggesting that the utilization of a spiral or gear-shaped thread with a matched contact point at the tapered joint of a hip implant could be a viable option for reducing wear and enhancing stability. The literature analysis underscores substantial research opportunities in developing a hip implant joint that addresses both dislocation and increased wear rates. Finally, this review explores potential solutions to existing obstacles in developing a better hip implant system.
Collapse
Affiliation(s)
- Md Mohiuddin Soliman
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| | - Mohammad Tariqul Islam
- Centre for Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| | - Muhammad E H Chowdhury
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
| | - Abdulrahman Alqahtani
- Department of Medical Equipment Technology, College of Applied, Medical Science, Majmaah University, Majmaah City 11952, Saudi Arabia
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Farayi Musharavati
- Department of Mechanical & Industrial Engineering, Qatar University, Doha 2713, Qatar.
| | - Touhidul Alam
- Pusat Sains Ankasa (ANGKASA), Institut Perubahan Iklim, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia.
| | - Ahmed S Alshammari
- Department of Electrical Engineering, College of Engineering, University Hail, Hail 81481, Saudi Arabia.
- Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
| | - Norbahiah Misran
- Centre for Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Malaysia.
| | - Mohamed S Soliman
- Department of Electrical Engineering, College of Engineering, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia.
- Department of Electrical Engineering, Faculty of Energy Engineering, Aswan University, Aswan, 81528, Egypt
| | - Sakib Mahmud
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
| | - Amith Khandakar
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
3
|
Soliman MM, Chowdhury MEH, Islam MT, Musharavati F, Mahmud S, Hafizh M, Ayari MA, Khandakar A, Alam MK, Nezhad EZ. Design and Performance Evaluation of a Novel Spiral Head-Stem Trunnion for Hip Implants Using Finite Element Analysis. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16041466. [PMID: 36837096 PMCID: PMC9962303 DOI: 10.3390/ma16041466] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 05/27/2023]
Abstract
With an expectation of an increased number of revision surgeries and patients receiving orthopedic implants in the coming years, the focus of joint replacement research needs to be on improving the mechanical properties of implants. Head-stem trunnion fixation provides superior load support and implant stability. Fretting wear is formed at the trunnion because of the dynamic load activities of patients, and this eventually causes the total hip implant system to fail. To optimize the design, multiple experiments with various trunnion geometries have been performed by researchers to examine the wear rate and associated mechanical performance characteristics of the existing head-stem trunnion. The objective of this work is to quantify and evaluate the performance parameters of smooth and novel spiral head-stem trunnion types under dynamic loading situations. This study proposes a finite element method for estimating head-stem trunnion performance characteristics, namely contact pressure and sliding distance, for both trunnion types under walking and jogging dynamic loading conditions. The wear rate for both trunnion types was computed using the Archard wear model for a standard number of gait cycles. The experimental results indicated that the spiral trunnion with a uniform contact pressure distribution achieved more fixation than the smooth trunnion. However, the average contact pressure distribution was nearly the same for both trunnion types. The maximum and average sliding distances were both shorter for the spiral trunnion; hence, the summed sliding distance was approximately 10% shorter for spiral trunnions than that of the smooth trunnion over a complete gait cycle. Owing to a lower sliding ability, hip implants with spiral trunnions achieved more stability than those with smooth trunnions. The anticipated wear rate for spiral trunnions was 0.039 mm3, which was approximately 10% lower than the smooth trunnion wear rate of 0.048 mm3 per million loading cycles. The spiral trunnion achieved superior fixation stability with a shorter sliding distance and a lower wear rate than the smooth trunnion; therefore, the spiral trunnion can be recommended for future hip implant systems.
Collapse
Affiliation(s)
- Md Mohiuddin Soliman
- Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | | | - Mohammad Tariqul Islam
- Centre for Advanced Electronic and Communication Engineering, Department of Electrical, Electronic and Systems Engineering, Faculty of Engineering & Built Environment, Universiti Kebangsaan Malaysia (UKM), Bangi 43600, Selangor, Malaysia
| | - Farayi Musharavati
- Department of Mechanical & Industrial Engineering, Qatar University, Doha 2713, Qatar
| | - Sakib Mahmud
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
| | - Muhammad Hafizh
- Department of Mechanical & Industrial Engineering, Qatar University, Doha 2713, Qatar
| | | | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
| | | | - Erfan Zal Nezhad
- Department of Biomedical Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
4
|
Feyzi M, Fallahnezhad K, Taylor M, Hashemi R. An Overview of the Stability and Fretting Corrosion of Microgrooved Necks in the Taper Junction of Hip Implants. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8396. [PMID: 36499893 PMCID: PMC9735617 DOI: 10.3390/ma15238396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Fretting corrosion at the head-neck interface of modular hip implants, scientifically termed trunnionosis/taperosis, may cause regional inflammation, metallosis, and adverse local tissue reactions. The severity of such a deleterious process depends on various design parameters. In this review, the influence of surface topography (in some cases, called microgrooves/ridges) on the overall performance of the microgrooved head-neck junctions is investigated. The methodologies together with the assumptions and simplifications, as well as the findings from both the experimental observations (retrieval and in vitro) and the numerical approaches used in previous studies, are presented and discussed. The performance of the microgrooved junctions is compared to those with a smooth surface finish in two main categories: stability and integrity; wear, corrosion, and material loss. Existing contradictions and disagreements among the reported results are reported and discussed in order to present a comprehensive picture of the microgrooved junctions. The current research needs and possible future research directions on the microgrooved junctions are also identified and presented.
Collapse
|
5
|
Feyzi M, Fallahnezhad K, Taylor M, Hashemi R. The mechanics of head-neck taper junctions: What do we know from finite element analysis? J Mech Behav Biomed Mater 2021; 116:104338. [PMID: 33524892 DOI: 10.1016/j.jmbbm.2021.104338] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/16/2020] [Accepted: 01/15/2021] [Indexed: 12/18/2022]
Abstract
Modular hip implants are widely used in hip arthroplasty because of the advantages they can offer such as flexibility in material combinations and geometrical adjustments. The mechanical environment of the modular junction in the body is quite challenging due to the complex and varying off-axial mechanical loads of physical activities applied to a tapered interface of two contacting materials (head and neck) assembled by an impact force intraoperatively. Experimental analogies to the in-vivo condition of the taper junction are complex, expensive and time-consuming to implement; hence, computational simulations have been a preferred approach taken by researchers for studying the mechanics of these modular junctions that can help us understand their failure mechanisms and improve their design and longevity after implantation. This paper provides a clearer insight into the mechanics of the head-neck taper junction through a careful review on the finite element studies of the junction and their findings. The effects of various factors on the mechanical outputs namely: stresses, micromotions, and contact situations are reviewed and discussed. Also, the simulation methodology of the studies in the literature is compared. Research opportunities for future are scrutinised through tabulating data and information that have been carefully retrieved form the reported findings.
Collapse
Affiliation(s)
- Mohsen Feyzi
- College of Science and Engineering, Medical Device Research Institute, Flinders University, Tonsley, SA, 5042, Australia
| | - Khosro Fallahnezhad
- College of Science and Engineering, Medical Device Research Institute, Flinders University, Tonsley, SA, 5042, Australia
| | - Mark Taylor
- College of Science and Engineering, Medical Device Research Institute, Flinders University, Tonsley, SA, 5042, Australia
| | - Reza Hashemi
- College of Science and Engineering, Medical Device Research Institute, Flinders University, Tonsley, SA, 5042, Australia.
| |
Collapse
|