1
|
Alhussaini AJ, Steele JD, Jawli A, Nabi G. Radiomics Machine Learning Analysis of Clear Cell Renal Cell Carcinoma for Tumour Grade Prediction Based on Intra-Tumoural Sub-Region Heterogeneity. Cancers (Basel) 2024; 16:1454. [PMID: 38672536 PMCID: PMC11048006 DOI: 10.3390/cancers16081454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Renal cancers are among the top ten causes of cancer-specific mortality, of which the ccRCC subtype is responsible for most cases. The grading of ccRCC is important in determining tumour aggressiveness and clinical management. OBJECTIVES The objectives of this research were to predict the WHO/ISUP grade of ccRCC pre-operatively and characterise the heterogeneity of tumour sub-regions using radiomics and ML models, including comparison with pre-operative biopsy-determined grading in a sub-group. METHODS Data were obtained from multiple institutions across two countries, including 391 patients with pathologically proven ccRCC. For analysis, the data were separated into four cohorts. Cohorts 1 and 2 included data from the respective institutions from the two countries, cohort 3 was the combined data from both cohort 1 and 2, and cohort 4 was a subset of cohort 1, for which both the biopsy and subsequent histology from resection (partial or total nephrectomy) were available. 3D image segmentation was carried out to derive a voxel of interest (VOI) mask. Radiomics features were then extracted from the contrast-enhanced images, and the data were normalised. The Pearson correlation coefficient and the XGBoost model were used to reduce the dimensionality of the features. Thereafter, 11 ML algorithms were implemented for the purpose of predicting the ccRCC grade and characterising the heterogeneity of sub-regions in the tumours. RESULTS For cohort 1, the 50% tumour core and 25% tumour periphery exhibited the best performance, with an average AUC of 77.9% and 78.6%, respectively. The 50% tumour core presented the highest performance in cohorts 2 and 3, with average AUC values of 87.6% and 76.9%, respectively. With the 25% periphery, cohort 4 showed AUC values of 95.0% and 80.0% for grade prediction when using internal and external validation, respectively, while biopsy histology had an AUC of 31.0% for the classification with the final grade of resection histology as a reference standard. The CatBoost classifier was the best for each of the four cohorts with an average AUC of 80.0%, 86.5%, 77.0% and 90.3% for cohorts 1, 2, 3 and 4 respectively. CONCLUSIONS Radiomics signatures combined with ML have the potential to predict the WHO/ISUP grade of ccRCC with superior performance, when compared to pre-operative biopsy. Moreover, tumour sub-regions contain useful information that should be analysed independently when determining the tumour grade. Therefore, it is possible to distinguish the grade of ccRCC pre-operatively to improve patient care and management.
Collapse
Affiliation(s)
- Abeer J. Alhussaini
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- Department of Clinical Radiology, Al-Amiri Hospital, Ministry of Health, Sulaibikhat 1300, Kuwait
| | - J. Douglas Steele
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| | - Adel Jawli
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
- Department of Clinical Radiology, Sheikh Jaber Al-Ahmad Al-Sabah Hospital, Ministry of Health, Sulaibikhat 1300, Kuwait
| | - Ghulam Nabi
- Division of Imaging Sciences and Technology, School of Medicine, Ninewells Hospital, University of Dundee, Dundee DD1 9SY, UK
| |
Collapse
|
2
|
Vairavan R, Abdullah O, Retnasamy PB, Sauli Z, Shahimin MM, Retnasamy V. A Brief Review on Breast Carcinoma and Deliberation on Current Non Invasive Imaging Techniques for Detection. Curr Med Imaging 2020; 15:85-121. [PMID: 31975658 DOI: 10.2174/1573405613666170912115617] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 08/27/2017] [Accepted: 08/29/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND Breast carcinoma is a life threatening disease that accounts for 25.1% of all carcinoma among women worldwide. Early detection of the disease enhances the chance for survival. DISCUSSION This paper presents comprehensive report on breast carcinoma disease and its modalities available for detection and diagnosis, as it delves into the screening and detection modalities with special focus placed on the non-invasive techniques and its recent advancement work done, as well as a proposal on a novel method for the application of early breast carcinoma detection. CONCLUSION This paper aims to serve as a foundation guidance for the reader to attain bird's eye understanding on breast carcinoma disease and its current non-invasive modalities.
Collapse
Affiliation(s)
- Rajendaran Vairavan
- School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
| | - Othman Abdullah
- Hospital Sultan Abdul Halim, 08000 Sg. Petani, Kedah, Malaysia
| | | | - Zaliman Sauli
- School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
| | - Mukhzeer Mohamad Shahimin
- Department of Electrical and Electronic Engineering, Faculty of Engineering, National Defence University of Malaysia (UPNM), Kem Sungai Besi, 57000 Kuala Lumpur, Malaysia
| | - Vithyacharan Retnasamy
- School of Microelectronic Engineering, Universiti Malaysia Perlis, Pauh Putra Campus, 02600 Arau, Perlis, Malaysia
| |
Collapse
|
3
|
Chronaiou I, Giskeødegård GF, Goa PE, Teruel J, Hedayati R, Lundgren S, Huuse EM, Pickles MD, Gibbs P, Sitter B, Bathen TF. Feasibility of contrast-enhanced MRI derived textural features to predict overall survival in locally advanced breast cancer. Acta Radiol 2020; 61:875-884. [PMID: 31744303 DOI: 10.1177/0284185119885116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND The prognosis for women with locally advanced breast cancer (LABC) is poor and there is a need for better treatment stratification. Gray-level co-occurrence matrix (GLCM) texture analysis of magnetic resonance (MR) images has been shown to predict pathological response and could become useful in stratifying patients to more targeted treatments. PURPOSE To evaluate the ability of GLCM textural features obtained before neoadjuvant chemotherapy to predict overall survival (OS) seven years after diagnosis of patients with LABC. MATERIAL AND METHODS This retrospective study includes data from 55 patients with LABC. GLCM textural features were extracted from segmented tumors in pre-treatment dynamic contrast-enhanced 3-T MR images. Prediction of OS by GLCM textural features was assessed and compared to predictions using traditional clinical variables. RESULTS Linear mixed-effect models showed significant differences in five GLCM features (f1, f2, f5, f10, f11) between survivors and non-survivors. Using discriminant analysis for prediction of survival, GLCM features from 2 min post-contrast images achieved a classification accuracy of 73% (P < 0.001), whereas traditional prognostic factors resulted in a classification accuracy of 67% (P = 0.005). Using a combination of both yielded the highest classification accuracy (78%, P < 0.001). Median values for features f1, f2, f10, and f11 provided significantly different survival curves in Kaplan-Meier analysis. CONCLUSION This study shows a clear association between textural features from post-contrast images obtained before neoadjuvant chemotherapy and OS seven years after diagnosis. Further studies in larger cohorts should be undertaken to investigate how this prognostic information can be used to benefit treatment stratification.
Collapse
Affiliation(s)
- Ioanna Chronaiou
- Department of Circulation and Medical Imaging, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Guro Fanneløb Giskeødegård
- Department of Circulation and Medical Imaging, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Pål Erik Goa
- Department of Physics, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Jose Teruel
- Department of Radiation Oncology, NYU Langone Health, New York, NY, USA
| | - Roja Hedayati
- Cancer clinic, St. Olavs University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Steinar Lundgren
- Cancer clinic, St. Olavs University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Else Marie Huuse
- Clinic of Radiology and Nuclear Medicine, St. Olavs University Hospital, Trondheim, Norway
| | - Martin D Pickles
- Radiology Department, Hull University Teaching Hospitals NHS Trust, Hull, UK
| | - Peter Gibbs
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Beathe Sitter
- Department of Circulation and Medical Imaging, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
| | - Tone Frost Bathen
- Department of Circulation and Medical Imaging, NTNU – Norwegian University of Science and Technology, Trondheim, Norway
- Clinic of Radiology and Nuclear Medicine, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
4
|
Ayatollahi F, Shokouhi SB, Teuwen J. Differentiating benign and malignant mass and non-mass lesions in breast DCE-MRI using normalized frequency-based features. Int J Comput Assist Radiol Surg 2019; 15:297-307. [PMID: 31838643 DOI: 10.1007/s11548-019-02103-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022]
Abstract
PURPOSE In this study, we propose a new computer-aided diagnosis (CADx) to distinguish between malign and benign mass and non-mass lesions in breast DCE-MRI. For this purpose, we introduce new frequency textural features. METHODS In this paper, we propose novel normalized frequency-based features. These are obtained by applying the dual-tree complex wavelet transform to MRI slices containing a lesion for specific decomposition levels. The low-pass and band-pass frequency coefficients of the dual-tree complex wavelet transform represent the general shape and texture features, respectively, of the lesion. The extraction of these features is computationally efficient. We employ a support vector machine to classify the lesions, and investigate modified cost functions and under- and oversampling strategies to handle the class imbalance. RESULTS The proposed method has been tested on a dataset of 80 patients containing 103 lesions. An area under the curve of 0.98 for the mass and 0.94 for the non-mass lesions is obtained. Similarly, accuracies of 96.9% and 89.8%, sensitivities of 93.8% and 84.6% and specificities of 98% and 92.3% are obtained for the mass and non-mass lesions, respectively. CONCLUSION Normalized frequency-based features can characterize benign and malignant lesions efficiently in both mass- and non-mass-like lesions. Additionally, the combination of normalized frequency-based features and three-dimensional shape descriptors improves the CADx performance.
Collapse
Affiliation(s)
- Fazael Ayatollahi
- Electrical Engineering Department, Iran University of Science and Technology (IUST), Tehran, Iran.
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Shahriar B Shokouhi
- Electrical Engineering Department, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Jonas Teuwen
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Radiation Oncology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer using Radiomics Features of DCE-MRI. Sci Rep 2019; 9:2240. [PMID: 30783148 PMCID: PMC6381163 DOI: 10.1038/s41598-019-38502-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/31/2018] [Indexed: 02/06/2023] Open
Abstract
The accurate and noninvasive preoperative prediction of the state of the axillary lymph nodes is significant for breast cancer staging, therapy and the prognosis of patients. In this study, we analyzed the possibility of axillary lymph node metastasis directly based on Magnetic Resonance Imaging (MRI) of the breast in cancer patients. After mass segmentation and feature analysis, the SVM, KNN, and LDA three classifiers were used to distinguish the axillary lymph node state in 5-fold cross-validation. The results showed that the effect of the SVM classifier in predicting breast axillary lymph node metastasis was significantly higher than that of the KNN classifier and LDA classifier. The SVM classifier performed best, with the highest accuracy of 89.54%, and obtained an AUC of 0.8615 for identifying the lymph node status. Each feature was analyzed separately and the results showed that the effect of feature combination was obviously better than that of any individual feature on its own.
Collapse
|
6
|
Artificial Intelligence for Breast MRI in 2008-2018: A Systematic Mapping Review. AJR Am J Roentgenol 2019; 212:280-292. [PMID: 30601029 DOI: 10.2214/ajr.18.20389] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The purpose of this study is to review literature from the past decade on applications of artificial intelligence (AI) to breast MRI. MATERIALS AND METHODS In June 2018, a systematic search of the literature was performed to identify articles on the use of AI in breast MRI. For each article identified, the surname of the first author, year of publication, journal of publication, Web of Science Core Collection journal category, country of affiliation of the first author, study design, dataset, study aim(s), AI methods used, and, when available, diagnostic performance were recorded. RESULTS Sixty-seven studies, 58 (87%) of which had a retrospective design, were analyzed. When journal categories were considered, 36% of articles were identified as being included in the radiology and imaging journal category. Contrast-enhanced sequences were used for most AI applications (n = 50; 75%) and, on occasion, were combined with other MRI sequences (n = 8; 12%). Four main clinical aims were addressed: breast lesion classification (n = 36; 54%), image processing (n = 14; 21%), prognostic imaging (n = 9; 13%), and response to neoadjuvant therapy (n = 8; 12%). Artificial neural networks, support vector machines, and clustering were the most frequently used algorithms, accounting for 66%. The performance achieved and the most frequently used techniques were then analyzed according to specific clinical aims. Supervised learning algorithms were primarily used for lesion characterization, with the AUC value from ROC analysis ranging from 0.74 to 0.98 (median, 0.87) and with that from prognostic imaging ranging from 0.62 to 0.88 (median, 0.80), whereas unsupervised learning was mainly used for image processing purposes. CONCLUSION Interest in the application of advanced AI methods to breast MRI is growing worldwide. Although this growth is encouraging, the current performance of AI applications in breast MRI means that such applications are still far from being incorporated into clinical practice.
Collapse
|
7
|
Yassin NIR, Omran S, El Houby EMF, Allam H. Machine learning techniques for breast cancer computer aided diagnosis using different image modalities: A systematic review. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2018; 156:25-45. [PMID: 29428074 DOI: 10.1016/j.cmpb.2017.12.012] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/26/2017] [Accepted: 12/11/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND AND OBJECTIVE The high incidence of breast cancer in women has increased significantly in the recent years. Physician experience of diagnosing and detecting breast cancer can be assisted by using some computerized features extraction and classification algorithms. This paper presents the conduction and results of a systematic review (SR) that aims to investigate the state of the art regarding the computer aided diagnosis/detection (CAD) systems for breast cancer. METHODS The SR was conducted using a comprehensive selection of scientific databases as reference sources, allowing access to diverse publications in the field. The scientific databases used are Springer Link (SL), Science Direct (SD), IEEE Xplore Digital Library, and PubMed. Inclusion and exclusion criteria were defined and applied to each retrieved work to select those of interest. From 320 studies retrieved, 154 studies were included. However, the scope of this research is limited to scientific and academic works and excludes commercial interests. RESULTS This survey provides a general analysis of the current status of CAD systems according to the used image modalities and the machine learning based classifiers. Potential research studies have been discussed to create a more objective and efficient CAD systems.
Collapse
Affiliation(s)
- Nisreen I R Yassin
- Systems & Information Department, Engineering Research Division, National Research Centre, Dokki, Cairo 12311, Egypt.
| | - Shaimaa Omran
- Systems & Information Department, Engineering Research Division, National Research Centre, Dokki, Cairo 12311, Egypt.
| | - Enas M F El Houby
- Systems & Information Department, Engineering Research Division, National Research Centre, Dokki, Cairo 12311, Egypt.
| | - Hemat Allam
- Anaesthesia & Pain, Medical Division, National Research Centre, Dokki, Cairo 12311, Egypt.
| |
Collapse
|
8
|
Milenković J, Dalmış MU, Žgajnar J, Platel B. Textural analysis of early-phase spatiotemporal changes in contrast enhancement of breast lesions imaged with an ultrafast DCE-MRI protocol. Med Phys 2017. [PMID: 28622412 DOI: 10.1002/mp.12408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
PURPOSE New ultrafast view-sharing sequences have enabled breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to be performed at high spatial and temporal resolution. The aim of this study is to evaluate the diagnostic potential of textural features that quantify the spatiotemporal changes of the contrast-agent uptake in computer-aided diagnosis of malignant and benign breast lesions imaged with high spatial and temporal resolution DCE-MRI. METHOD The proposed approach is based on the textural analysis quantifying the spatial variation of six dynamic features of the early-phase contrast-agent uptake of a lesion's largest cross-sectional area. The textural analysis is performed by means of the second-order gray-level co-occurrence matrix, gray-level run-length matrix and gray-level difference matrix. This yields 35 textural features to quantify the spatial variation of each of the six dynamic features, providing a feature set of 210 features in total. The proposed feature set is evaluated based on receiver operating characteristic (ROC) curve analysis in a cross-validation scheme for random forests (RF) and two support vector machine classifiers, with linear and radial basis function (RBF) kernel. Evaluation is done on a dataset with 154 breast lesions (83 malignant and 71 benign) and compared to a previous approach based on 3D morphological features and the average and standard deviation of the same dynamic features over the entire lesion volume as well as their average for the smaller region of the strongest uptake rate. RESULT The area under the ROC curve (AUC) obtained by the proposed approach with the RF classifier was 0.8997, which was significantly higher (P = 0.0198) than the performance achieved by the previous approach (AUC = 0.8704) on the same dataset. Similarly, the proposed approach obtained a significantly higher result for both SVM classifiers with RBF (P = 0.0096) and linear kernel (P = 0.0417) obtaining AUC of 0.8876 and 0.8548, respectively, compared to AUC values of previous approach of 0.8562 and 0.8311, respectively. CONCLUSION The proposed approach based on 2D textural features quantifying spatiotemporal changes of the contrast-agent uptake significantly outperforms the previous approach based on 3D morphology and dynamic analysis in differentiating the malignant and benign breast lesions, showing its potential to aid clinical decision making.
Collapse
Affiliation(s)
- Jana Milenković
- Faculty for Electrical Engineering, University of Ljubljana, Tržaška 25, 1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Vražov trg 2, 1000, Ljubljana, Slovenia
| | - Mehmet Ufuk Dalmış
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein 10, Route 766, Nijmegen, Gelderland, 6500 HB, the Netherlands
| | - Janez Žgajnar
- Institute of Oncology, Zaloška 2, 1000, Ljubljana, Slovenia
| | - Bram Platel
- Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Geert Grooteplein 10, Route 766, Nijmegen, Gelderland, 6500 HB, the Netherlands
| |
Collapse
|
9
|
Chaudhury B, Zhou M, Goldgof DB, Hall LO, Gatenby RA, Gillies RJ, Patel BK, Weinfurtner RJ, Drukteinis JS. Heterogeneity in intratumoral regions with rapid gadolinium washout correlates with estrogen receptor status and nodal metastasis. J Magn Reson Imaging 2015; 42:1421-30. [PMID: 25884277 DOI: 10.1002/jmri.24921] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 04/03/2015] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To evaluate heterogeneity within tumor subregions or "habitats" via textural kinetic analysis on breast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for the classification of two clinical prognostic features; 1) estrogen receptor (ER)-positive from ER-negative tumors, and 2) tumors with four or more viable lymph node metastases after neoadjuvant chemotherapy from tumors without nodal metastases. MATERIALS AND METHODS Two separate volumetric DCE-MRI datasets were obtained at 1.5T, comprised of bilateral axial dynamic 3D T1 -weighted fat suppressed gradient recalled echo-pulse sequences obtained before and after gadolinium-based contrast administration. Representative image slices of breast tumors from 38 and 34 patients were used for ER status and lymph node classification, respectively. Four tumor habitats were defined based on their kinetic contrast enhancement characteristics. The heterogeneity within each habitat was quantified using textural kinetic features, which were evaluated using two feature selectors and three classifiers. RESULTS Textural kinetic features from the habitat with rapid delayed washout yielded classification accuracies of 84.44% (area under the curve [AUC] 0.83) for ER and 88.89% (AUC 0.88) for lymph node status. The texture feature, information measure of correlation, most often chosen in cross-validations, measures heterogeneity and provides accuracy approximately the same as with the best feature set. CONCLUSION Heterogeneity within habitats with rapid washout is highly predictive of molecular tumor characteristics and clinical behavior.
Collapse
Affiliation(s)
- Baishali Chaudhury
- Department of Computer Science and Engineering, University of South Florida, Tampa, Florida, USA
| | - Mu Zhou
- Department of Computer Science and Engineering, University of South Florida, Tampa, Florida, USA
| | - Dmitry B Goldgof
- Department of Computer Science and Engineering, University of South Florida, Tampa, Florida, USA
| | - Lawrence O Hall
- Department of Computer Science and Engineering, University of South Florida, Tampa, Florida, USA
| | - Robert A Gatenby
- Department of Radiology, H. Lee Moffitt Cancer and Research Institute, Tampa, Florida, USA
| | - Robert J Gillies
- Department of Radiology, H. Lee Moffitt Cancer and Research Institute, Tampa, Florida, USA
| | - Bhavika K Patel
- Department of Radiology, H. Lee Moffitt Cancer and Research Institute, Tampa, Florida, USA
| | - Robert J Weinfurtner
- Department of Radiology, H. Lee Moffitt Cancer and Research Institute, Tampa, Florida, USA
| | - Jennifer S Drukteinis
- Department of Radiology, H. Lee Moffitt Cancer and Research Institute, Tampa, Florida, USA
| |
Collapse
|
10
|
Chaudhury B, Zhou M, Goldgof DB, Hall LO, Gatenby RA, Gillies RJ, Drukteinis JS. Using features from tumor subregions of breast DCE-MRI for estrogen receptor status prediction. 2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC) 2014. [DOI: 10.1109/smc.2014.6974323] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
11
|
Chaudhury B, Hall LO, Goldgof DB, Gatenby RA, Gillies R, Drukteinis JS. New method for predicting estrogen receptor status utilizing breast MRI texture kinetic analysis. SPIE PROCEEDINGS 2014. [DOI: 10.1117/12.2043188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
12
|
Ali S, Majid A, Khan A. IDM-PhyChm-Ens: intelligent decision-making ensemble methodology for classification of human breast cancer using physicochemical properties of amino acids. Amino Acids 2014; 46:977-93. [PMID: 24390396 DOI: 10.1007/s00726-013-1659-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 12/20/2013] [Indexed: 12/21/2022]
Abstract
Development of an accurate and reliable intelligent decision-making method for the construction of cancer diagnosis system is one of the fast growing research areas of health sciences. Such decision-making system can provide adequate information for cancer diagnosis and drug discovery. Descriptors derived from physicochemical properties of protein sequences are very useful for classifying cancerous proteins. Recently, several interesting research studies have been reported on breast cancer classification. To this end, we propose the exploitation of the physicochemical properties of amino acids in protein primary sequences such as hydrophobicity (Hd) and hydrophilicity (Hb) for breast cancer classification. Hd and Hb properties of amino acids, in recent literature, are reported to be quite effective in characterizing the constituent amino acids and are used to study protein foldings, interactions, structures, and sequence-order effects. Especially, using these physicochemical properties, we observed that proline, serine, tyrosine, cysteine, arginine, and asparagine amino acids offer high discrimination between cancerous and healthy proteins. In addition, unlike traditional ensemble classification approaches, the proposed 'IDM-PhyChm-Ens' method was developed by combining the decision spaces of a specific classifier trained on different feature spaces. The different feature spaces used were amino acid composition, split amino acid composition, and pseudo amino acid composition. Consequently, we have exploited different feature spaces using Hd and Hb properties of amino acids to develop an accurate method for classification of cancerous protein sequences. We developed ensemble classifiers using diverse learning algorithms such as random forest (RF), support vector machines (SVM), and K-nearest neighbor (KNN) trained on different feature spaces. We observed that ensemble-RF, in case of cancer classification, performed better than ensemble-SVM and ensemble-KNN. Our analysis demonstrates that ensemble-RF, ensemble-SVM and ensemble-KNN are more effective than their individual counterparts. The proposed 'IDM-PhyChm-Ens' method has shown improved performance compared to existing techniques.
Collapse
Affiliation(s)
- Safdar Ali
- Department of Computer and Information Sciences, Pakistan Institute of Engineering, and Applied Sciences, Nilore, Islamabad, 45650, Pakistan,
| | | | | |
Collapse
|