1
|
Alli SR, Hossain SQ, Das S, Upshur R. The Potential of Artificial Intelligence Tools for Reducing Uncertainty in Medicine and Directions for Medical Education. JMIR MEDICAL EDUCATION 2024; 10:e51446. [PMID: 39496168 PMCID: PMC11554287 DOI: 10.2196/51446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 11/06/2024]
Abstract
Unlabelled In the field of medicine, uncertainty is inherent. Physicians are asked to make decisions on a daily basis without complete certainty, whether it is in understanding the patient's problem, performing the physical examination, interpreting the findings of diagnostic tests, or proposing a management plan. The reasons for this uncertainty are widespread, including the lack of knowledge about the patient, individual physician limitations, and the limited predictive power of objective diagnostic tools. This uncertainty poses significant problems in providing competent patient care. Research efforts and teaching are attempts to reduce uncertainty that have now become inherent to medicine. Despite this, uncertainty is rampant. Artificial intelligence (AI) tools, which are being rapidly developed and integrated into practice, may change the way we navigate uncertainty. In their strongest forms, AI tools may have the ability to improve data collection on diseases, patient beliefs, values, and preferences, thereby allowing more time for physician-patient communication. By using methods not previously considered, these tools hold the potential to reduce the uncertainty in medicine, such as those arising due to the lack of clinical information and provider skill and bias. Despite this possibility, there has been considerable resistance to the implementation of AI tools in medical practice. In this viewpoint article, we discuss the impact of AI on medical uncertainty and discuss practical approaches to teaching the use of AI tools in medical schools and residency training programs, including AI ethics, real-world skills, and technological aptitude.
Collapse
Affiliation(s)
| | - Soaad Qahhār Hossain
- Department of Computer Science, Temerty Centre for AI Research and Education in Medicine, University of Toronto, 27 King's College Circle, Toronto, ON, M5S 1A1, Canada, 1 6478922470
- Intermedia.net Inc., Sunnyvale, CA, United States
| | - Sunit Das
- Department of Surgery, University of Toronto, Toronto, ON, Canada
- Keenan Chair in Surgery, Division of Neurosurgery, St. Michael's Hospital, Toronto, ON, Canada
| | - Ross Upshur
- Dalla Lana School of Public Health, Department of Family and Community Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Gordon M, Daniel M, Ajiboye A, Uraiby H, Xu NY, Bartlett R, Hanson J, Haas M, Spadafore M, Grafton-Clarke C, Gasiea RY, Michie C, Corral J, Kwan B, Dolmans D, Thammasitboon S. A scoping review of artificial intelligence in medical education: BEME Guide No. 84. MEDICAL TEACHER 2024; 46:446-470. [PMID: 38423127 DOI: 10.1080/0142159x.2024.2314198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/31/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Artificial Intelligence (AI) is rapidly transforming healthcare, and there is a critical need for a nuanced understanding of how AI is reshaping teaching, learning, and educational practice in medical education. This review aimed to map the literature regarding AI applications in medical education, core areas of findings, potential candidates for formal systematic review and gaps for future research. METHODS This rapid scoping review, conducted over 16 weeks, employed Arksey and O'Malley's framework and adhered to STORIES and BEME guidelines. A systematic and comprehensive search across PubMed/MEDLINE, EMBASE, and MedEdPublish was conducted without date or language restrictions. Publications included in the review spanned undergraduate, graduate, and continuing medical education, encompassing both original studies and perspective pieces. Data were charted by multiple author pairs and synthesized into various thematic maps and charts, ensuring a broad and detailed representation of the current landscape. RESULTS The review synthesized 278 publications, with a majority (68%) from North American and European regions. The studies covered diverse AI applications in medical education, such as AI for admissions, teaching, assessment, and clinical reasoning. The review highlighted AI's varied roles, from augmenting traditional educational methods to introducing innovative practices, and underscores the urgent need for ethical guidelines in AI's application in medical education. CONCLUSION The current literature has been charted. The findings underscore the need for ongoing research to explore uncharted areas and address potential risks associated with AI use in medical education. This work serves as a foundational resource for educators, policymakers, and researchers in navigating AI's evolving role in medical education. A framework to support future high utility reporting is proposed, the FACETS framework.
Collapse
Affiliation(s)
- Morris Gordon
- School of Medicine and Dentistry, University of Central Lancashire, Preston, UK
- Blackpool Hospitals NHS Foundation Trust, Blackpool, UK
| | - Michelle Daniel
- School of Medicine, University of California, San Diego, SanDiego, CA, USA
| | - Aderonke Ajiboye
- School of Medicine and Dentistry, University of Central Lancashire, Preston, UK
| | - Hussein Uraiby
- Department of Cellular Pathology, University Hospitals of Leicester NHS Trust, Leicester, UK
| | - Nicole Y Xu
- School of Medicine, University of California, San Diego, SanDiego, CA, USA
| | - Rangana Bartlett
- Department of Cognitive Science, University of California, San Diego, CA, USA
| | - Janice Hanson
- Department of Medicine and Office of Education, School of Medicine, Washington University in Saint Louis, Saint Louis, MO, USA
| | - Mary Haas
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Maxwell Spadafore
- Department of Emergency Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | - Colin Michie
- School of Medicine and Dentistry, University of Central Lancashire, Preston, UK
| | - Janet Corral
- Department of Medicine, University of Nevada Reno, School of Medicine, Reno, NV, USA
| | - Brian Kwan
- School of Medicine, University of California, San Diego, SanDiego, CA, USA
| | - Diana Dolmans
- School of Health Professions Education, Faculty of Health, Maastricht University, Maastricht, NL, USA
| | - Satid Thammasitboon
- Center for Research, Innovation and Scholarship in Health Professions Education, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
3
|
Subramanian HV, Canfield C, Shank DB. Designing explainable AI to improve human-AI team performance: A medical stakeholder-driven scoping review. Artif Intell Med 2024; 149:102780. [PMID: 38462282 DOI: 10.1016/j.artmed.2024.102780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/20/2023] [Accepted: 01/14/2024] [Indexed: 03/12/2024]
Abstract
The rise of complex AI systems in healthcare and other sectors has led to a growing area of research called Explainable AI (XAI) designed to increase transparency. In this area, quantitative and qualitative studies focus on improving user trust and task performance by providing system- and prediction-level XAI features. We analyze stakeholder engagement events (interviews and workshops) on the use of AI for kidney transplantation. From this we identify themes which we use to frame a scoping literature review on current XAI features. The stakeholder engagement process lasted over nine months covering three stakeholder group's workflows, determining where AI could intervene and assessing a mock XAI decision support system. Based on the stakeholder engagement, we identify four major themes relevant to designing XAI systems - 1) use of AI predictions, 2) information included in AI predictions, 3) personalization of AI predictions for individual differences, and 4) customizing AI predictions for specific cases. Using these themes, our scoping literature review finds that providing AI predictions before, during, or after decision-making could be beneficial depending on the complexity of the stakeholder's task. Additionally, expert stakeholders like surgeons prefer minimal to no XAI features, AI prediction, and uncertainty estimates for easy use cases. However, almost all stakeholders prefer to have optional XAI features to review when needed, especially in hard-to-predict cases. The literature also suggests that providing both system- and prediction-level information is necessary to build the user's mental model of the system appropriately. Although XAI features improve users' trust in the system, human-AI team performance is not always enhanced. Overall, stakeholders prefer to have agency over the XAI interface to control the level of information based on their needs and task complexity. We conclude with suggestions for future research, especially on customizing XAI features based on preferences and tasks.
Collapse
Affiliation(s)
- Harishankar V Subramanian
- Engineering Management & Systems Engineering, Missouri University of Science and Technology, 600 W 14(th) Street, Rolla, MO 65409, United States of America
| | - Casey Canfield
- Engineering Management & Systems Engineering, Missouri University of Science and Technology, 600 W 14(th) Street, Rolla, MO 65409, United States of America.
| | - Daniel B Shank
- Psychological Science, Missouri University of Science and Technology, 500 W 14(th) Street, Rolla, MO 65409, United States of America
| |
Collapse
|
4
|
Yelne S, Chaudhary M, Dod K, Sayyad A, Sharma R. Harnessing the Power of AI: A Comprehensive Review of Its Impact and Challenges in Nursing Science and Healthcare. Cureus 2023; 15:e49252. [PMID: 38143615 PMCID: PMC10744168 DOI: 10.7759/cureus.49252] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
This comprehensive review delves into the impact and challenges of Artificial Intelligence (AI) in nursing science and healthcare. AI has already demonstrated its transformative potential in these fields, with applications spanning from personalized care and diagnostic accuracy to predictive analytics and telemedicine. However, the integration of AI has its complexities, including concerns related to data privacy, ethical considerations, and biases in algorithms and datasets. The future of healthcare appears promising, with AI poised to advance diagnostics, treatment, and healthcare practices. Nevertheless, it is crucial to remember that AI should complement, not replace, healthcare professionals, preserving the essential human element of care. To maximize AI's potential in healthcare, interdisciplinary collaboration, ethical guidelines, and the protection of patient rights are essential. This review concludes with a call to action, emphasizing the need for ongoing research and collective efforts to ensure that AI contributes to improved healthcare outcomes while upholding the highest standards of ethics and patient-centered care.
Collapse
Affiliation(s)
- Seema Yelne
- Nursing, Shalinitai Meghe College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Minakshi Chaudhary
- Nursing, Shalinitai Meghe College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Karishma Dod
- Nursing, Shalinitai Meghe College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Akhtaribano Sayyad
- Nursing, Shalinitai Meghe College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Ranjana Sharma
- Nursing, Shalinitai Meghe College of Nursing, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|