1
|
Rujas M, Martín Gómez Del Moral Herranz R, Fico G, Merino-Barbancho B. Synthetic data generation in healthcare: A scoping review of reviews on domains, motivations, and future applications. Int J Med Inform 2024; 195:105763. [PMID: 39719743 DOI: 10.1016/j.ijmedinf.2024.105763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/11/2024] [Accepted: 12/14/2024] [Indexed: 12/26/2024]
Abstract
BACKGROUND The development of Artificial Intelligence in the healthcare sector is generating a great impact. However, one of the primary challenges for the implementation of this technology is the access to high-quality data due to issues in data collection and regulatory constraints, for which synthetic data is an emerging alternative. While previous research has reviewed synthetic data generation techniques, there is limited focus on their applications and the motivations driving their synthesis. A comprehensive review is needed to expand the potential of synthetic data into less explored healthcare areas. OBJECTIVE This review aims to identify the healthcare domains where synthetic data are currently generated, the motivations behind their creation, their future uses, limitations, and types of data. MATERIALS AND METHODS Following the PRISMA-ScR framework, this review analysed literature from the last 10 years within PubMed, Scopus, and Web of Science. Reviews containing information on synthetic data generation in healthcare were screened and analysed. Key healthcare domains, motivations, future uses, and gaps in the literature were identified through a structured data extraction process. RESULTS Of the 346 reviews identified, 42 were included for data extraction. Thirteen main domains were identified, with Oncology, Neurology, and Cardiology being the most frequently mentioned. Five primary motivations for synthetic data generation and three major categories of future applications were highlighted. Additionally, unstructured data, particularly images, were found to be the predominant type of synthetic data generated. DISCUSSION AND CONCLUSION Synthetic data are currently being generated across diverse healthcare domains, showcasing their adaptability and potential. Despite their early stage, synthetic data technologies hold significant promise for future applications. Expanding their use into new domains and less common data types (e.g., video and text) could further enhance their impact. Future work should focus on developing evaluation benchmarks and standardized generative models tailored to specific healthcare domains.
Collapse
Affiliation(s)
- Miguel Rujas
- Life Supporting Technologies Research Group, Universidad Politécnica de Madrid, Avda Complutense 30, 28040 Madrid, Spain.
| | | | - Giuseppe Fico
- Life Supporting Technologies Research Group, Universidad Politécnica de Madrid, Avda Complutense 30, 28040 Madrid, Spain
| | - Beatriz Merino-Barbancho
- Life Supporting Technologies Research Group, Universidad Politécnica de Madrid, Avda Complutense 30, 28040 Madrid, Spain
| |
Collapse
|
2
|
Qiao S, Xue M, Zuo Y, Zheng J, Jiang H, Zeng X, Peng D. Four-phase CT lesion recognition based on multi-phase information fusion framework and spatiotemporal prediction module. Biomed Eng Online 2024; 23:103. [PMID: 39434126 PMCID: PMC11492744 DOI: 10.1186/s12938-024-01297-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024] Open
Abstract
Multiphase information fusion and spatiotemporal feature modeling play a crucial role in the task of four-phase CT lesion recognition. In this paper, we propose a four-phase CT lesion recognition algorithm based on multiphase information fusion framework and spatiotemporal prediction module. Specifically, the multiphase information fusion framework uses the interactive perception mechanism to realize the channel-spatial information interactive weighting between multiphase features. In the spatiotemporal prediction module, we design a 1D deep residual network to integrate multiphase feature vectors, and use the GRU architecture to model the temporal enhancement information between CT slices. In addition, we employ CT image pseudo-color processing for data augmentation and train the whole network based on a multi-task learning framework. We verify the proposed network on a four-phase CT dataset. The experimental results show that the proposed network can effectively fuse the multi-phase information and model the temporal enhancement information between CT slices, showing excellent performance in lesion recognition.
Collapse
Affiliation(s)
- Shaohua Qiao
- HDU-ITMO Joint Institute, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Mengfan Xue
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Yan Zuo
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Jiannan Zheng
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Haodong Jiang
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Xiangai Zeng
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China
| | - Dongliang Peng
- School of Automation, Hangzhou Dianzi University, Hangzhou, 310018, Zhejiang, China.
| |
Collapse
|
3
|
Huang S, Nie X, Pu K, Wan X, Luo J. A flexible deep learning framework for liver tumor diagnosis using variable multi-phase contrast-enhanced CT scans. J Cancer Res Clin Oncol 2024; 150:443. [PMID: 39361193 PMCID: PMC11450020 DOI: 10.1007/s00432-024-05977-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Liver cancer is a significant cause of cancer-related mortality worldwide and requires tailored treatment strategies for different types. However, preoperative accurate diagnosis of the type presents a challenge. This study aims to develop an automatic diagnostic model based on multi-phase contrast-enhanced CT (CECT) images to distinguish between hepatocellular carcinoma (HCC), intrahepatic cholangiocarcinoma (ICC), and normal individuals. METHODS We designed a Hierarchical Long Short-Term Memory (H-LSTM) model, whose core components consist of a shared image feature extractor across phases, an internal LSTM for each phase, and an external LSTM across phases. The internal LSTM aggregates features from different layers of 2D CECT images, while the external LSTM aggregates features across different phases. H-LSTM can handle incomplete phases and varying numbers of CECT image layers, making it suitable for real-world decision support scenarios. Additionally, we applied phase augmentation techniques to process multi-phase CECT images, improving the model's robustness. RESULTS The H-LSTM model achieved an overall average AUROC of 0.93 (0.90, 1.00) on the test dataset, with AUROC for HCC classification reaching 0.97 (0.93, 1.00) and for ICC classification reaching 0.90 (0.78, 1.00). Comprehensive validation in scenarios with incomplete phases was performed, with the H-LSTM model consistently achieving AUROC values over 0.9. CONCLUSION The proposed H-LSTM model can be employed for classification tasks involving incomplete phases of CECT images in real-world scenarios, demonstrating high performance. This highlights the potential of AI-assisted systems in achieving accurate diagnosis and treatment of liver cancer. H-LSTM offers an effective solution for processing multi-phase data and provides practical value for clinical diagnostics.
Collapse
Affiliation(s)
- Shixin Huang
- Department of Scientific Research, The People's Hospital of Yubei District of Chongqing city, Chongqing, 401120, China
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Xixi Nie
- School of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China
| | - Kexue Pu
- School of Medical Informatics, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyu Wan
- School of Communications and Information Engineering, Chongqing University of Posts and Telecommunications, Chongqing, 400065, China.
| | - Jiawei Luo
- West China Biomedical Big Data Center, Med-X Center for Informatics, West China Hospital, Sichuan University, Chengdu, 610044, China.
| |
Collapse
|
4
|
Wang L, Fatemi M, Alizad A. Artificial intelligence techniques in liver cancer. Front Oncol 2024; 14:1415859. [PMID: 39290245 PMCID: PMC11405163 DOI: 10.3389/fonc.2024.1415859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024] Open
Abstract
Hepatocellular Carcinoma (HCC), the most common primary liver cancer, is a significant contributor to worldwide cancer-related deaths. Various medical imaging techniques, including computed tomography, magnetic resonance imaging, and ultrasound, play a crucial role in accurately evaluating HCC and formulating effective treatment plans. Artificial Intelligence (AI) technologies have demonstrated potential in supporting physicians by providing more accurate and consistent medical diagnoses. Recent advancements have led to the development of AI-based multi-modal prediction systems. These systems integrate medical imaging with other modalities, such as electronic health record reports and clinical parameters, to enhance the accuracy of predicting biological characteristics and prognosis, including those associated with HCC. These multi-modal prediction systems pave the way for predicting the response to transarterial chemoembolization and microvascular invasion treatments and can assist clinicians in identifying the optimal patients with HCC who could benefit from interventional therapy. This paper provides an overview of the latest AI-based medical imaging models developed for diagnosing and predicting HCC. It also explores the challenges and potential future directions related to the clinical application of AI techniques.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Engineering, School of Technology, Reykjavık University, Reykjavík, Iceland
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Mostafa Fatemi
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Azra Alizad
- Department of Radiology, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| |
Collapse
|
5
|
Patel H, Shah H, Patel G, Patel A. Hematologic cancer diagnosis and classification using machine and deep learning: State-of-the-art techniques and emerging research directives. Artif Intell Med 2024; 152:102883. [PMID: 38657439 DOI: 10.1016/j.artmed.2024.102883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 04/16/2024] [Accepted: 04/18/2024] [Indexed: 04/26/2024]
Abstract
Hematology is the study of diagnosis and treatment options for blood diseases, including cancer. Cancer is considered one of the deadliest diseases across all age categories. Diagnosing such a deadly disease at the initial stage is essential to cure the disease. Hematologists and pathologists rely on microscopic evaluation of blood or bone marrow smear images to diagnose blood-related ailments. The abundance of overlapping cells, cells of varying densities among platelets, non-illumination levels, and the amount of red and white blood cells make it more difficult to diagnose illness using blood cell images. Pathologists are required to put more effort into the traditional, time-consuming system. Nowadays, it becomes possible with machine learning and deep learning techniques, to automate the diagnostic processes, categorize microscopic blood cells, and improve the accuracy of the procedure and its speed as the models developed using these methods may guide an assisting tool. In this article, we have acquired, analyzed, scrutinized, and finally selected around 57 research papers from various machine learning and deep learning methodologies that have been employed in the diagnosis of leukemia and its classification over the past 20 years, which have been published between the years 2003 and 2023 by PubMed, IEEE, Science Direct, Google Scholar and other pertinent sources. Our primary emphasis is on evaluating the advantages and limitations of analogous research endeavors to provide a concise and valuable research directive that can be of significant utility to fellow researchers in the field.
Collapse
Affiliation(s)
- Hema Patel
- Smt. Chandaben Mohanbhai Patel Institute of Computer Applications, Charotar University of Science and Technology, CHARUSAT, Campus, Changa, 388421 Anand, Gujarat, India.
| | - Himal Shah
- QURE Haematology Centre, Ahmedabad 380006, Gujarat, India
| | - Gayatri Patel
- Ramanbhai Patel College of Pharmacy, Charotar University of Science and Technology, CHARUSAT, Campus, Changa, 388421 Anand, Gujarat, India
| | - Atul Patel
- Smt. Chandaben Mohanbhai Patel Institute of Computer Applications, Charotar University of Science and Technology, CHARUSAT, Campus, Changa, 388421 Anand, Gujarat, India
| |
Collapse
|
6
|
Khan R, Su L, Zaman A, Hassan H, Kang Y, Huang B. Customized m-RCNN and hybrid deep classifier for liver cancer segmentation and classification. Heliyon 2024; 10:e30528. [PMID: 38765046 PMCID: PMC11096931 DOI: 10.1016/j.heliyon.2024.e30528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/28/2024] [Accepted: 04/29/2024] [Indexed: 05/21/2024] Open
Abstract
Diagnosing liver disease presents a significant medical challenge in impoverished countries, with over 30 billion individuals succumbing to it each year. Existing models for detecting liver abnormalities suffer from lower accuracy and higher constraint metrics. As a result, there is a pressing need for improved, efficient, and effective liver disease detection methods. To address the limitations of current models, this method introduces a deep liver segmentation and classification system based on a Customized Mask-Region Convolutional Neural Network (cm-RCNN). The process begins with preprocessing the input liver image, which includes Adaptive Histogram Equalization (AHE). AHE helps dehaze the input image, remove color distortion, and apply linear transformations to obtain the preprocessed image. Next, a precise region of interest is segmented from the preprocessed image using a novel deep strategy called cm-RCNN. To enhance segmentation accuracy, the architecture incorporates the ReLU activation function and the modified sigmoid activation function. Subsequently, a variety of features are extracted from the segmented image, including ResNet features, shape features (area, perimeter, approximation, and convex hull), and enhanced median binary pattern. These extracted features are then used to train a hybrid classification model, which incorporates classifiers like SqueezeNet and DeepMaxout models. The final classification outcome is determined by averaging the scores obtained from both classifiers.
Collapse
Affiliation(s)
- Rashid Khan
- College of Applied Sciences, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, 518188, China
| | - Liyilei Su
- College of Applied Sciences, Shenzhen University, Shenzhen, 518060, China
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, 518188, China
| | - Asim Zaman
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518188, China
| | - Haseeb Hassan
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518188, China
| | - Yan Kang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen, 518060, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518188, China
| | - Bingding Huang
- College of Applied Sciences, Shenzhen University, Shenzhen, 518060, China
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen, 518188, China
| |
Collapse
|
7
|
Luo X, Li P, Chen H, Zhou K, Piao S, Yang L, Hu B, Geng D. Automatic segmentation of hepatocellular carcinoma on dynamic contrast-enhanced MRI based on deep learning. Phys Med Biol 2024; 69:065008. [PMID: 38330492 DOI: 10.1088/1361-6560/ad2790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 02/08/2024] [Indexed: 02/10/2024]
Abstract
Objective. Precise hepatocellular carcinoma (HCC) detection is crucial for clinical management. While studies focus on computed tomography-based automatic algorithms, there is a rareness of research on automatic detection based on dynamic contrast enhanced (DCE) magnetic resonance imaging. This study is to develop an automatic detection and segmentation deep learning model for HCC using DCE.Approach: DCE images acquired from 2016 to 2021 were retrospectively collected. Then, 382 patients (301 male; 81 female) with 466 lesions pathologically confirmed were included and divided into an 80% training-validation set and a 20% independent test set. For external validation, 51 patients (42 male; 9 female) in another hospital from 2018 to 2021 were included. The U-net architecture was modified to accommodate multi-phasic DCE input. The model was trained with the training-validation set using five-fold cross-validation, and furtherly evaluated with the independent test set using comprehensive metrics for segmentation and detection performance. The proposed automatic segmentation model consisted of five main steps: phase registration, automatic liver region extraction using a pre-trained model, automatic HCC lesion segmentation using the multi-phasic deep learning model, ensemble of five-fold predictions, and post-processing using connected component analysis to enhance the performance to refine predictions and eliminate false positives.Main results. The proposed model achieved a mean dice similarity coefficient (DSC) of 0.81 ± 0.11, a sensitivity of 94.41 ± 15.50%, a precision of 94.19 ± 17.32%, and 0.14 ± 0.48 false positive lesions per patient in the independent test set. The model detected 88% (80/91) HCC lesions in the condition of DSC > 0.5, and the DSC per tumor was 0.80 ± 0.13. In the external set, the model detected 92% (58/62) lesions with 0.12 ± 0.33 false positives per patient, and the DSC per tumor was 0.75 ± 0.10.Significance.This study developed an automatic detection and segmentation deep learning model for HCC using DCE, which yielded promising post-processed results in accurately identifying and delineating HCC lesions.
Collapse
Affiliation(s)
- Xiao Luo
- Academy for Engineering and Technology, Fudan University, Shanghai, People's Republic of China
| | - Peiwen Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Hongyi Chen
- Academy for Engineering and Technology, Fudan University, Shanghai, People's Republic of China
| | - Kun Zhou
- Academy for Engineering and Technology, Fudan University, Shanghai, People's Republic of China
| | - Sirong Piao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People's Republic China
| | - Liqin Yang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Intelligent Imaging for Critical Brain Diseases, Shanghai, People's Republic China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, People's Republic of China
| | - Bin Hu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Daoying Geng
- Academy for Engineering and Technology, Fudan University, Shanghai, People's Republic of China
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- Shanghai Engineering Research Center of Intelligent Imaging for Critical Brain Diseases, Shanghai, People's Republic China
- Institute of Functional and Molecular Medical Imaging, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
8
|
Yang S, Liang Y, Wu S, Sun P, Chen Z. SADSNet: A robust 3D synchronous segmentation network for liver and liver tumors based on spatial attention mechanism and deep supervision. JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY 2024; 32:707-723. [PMID: 38552134 DOI: 10.3233/xst-230312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Highlights • Introduce a data augmentation strategy to expand the required different morphological data during the training and learning phase, and improve the algorithm's feature learning ability for complex and diverse tumor morphology CT images.• Design attention mechanisms for encoding and decoding paths to extract fine pixel level features, improve feature extraction capabilities, and achieve efficient spatial channel feature fusion.• The deep supervision layer is used to correct and decode the final image data to provide high accuracy of results.• The effectiveness of this method has been affirmed through validation on the LITS, 3DIRCADb, and SLIVER datasets. BACKGROUND Accurately extracting liver and liver tumors from medical images is an important step in lesion localization and diagnosis, surgical planning, and postoperative monitoring. However, the limited number of radiation therapists and a great number of images make this work time-consuming. OBJECTIVE This study designs a spatial attention deep supervised network (SADSNet) for simultaneous automatic segmentation of liver and tumors. METHOD Firstly, self-designed spatial attention modules are introduced at each layer of the encoder and decoder to extract image features at different scales and resolutions, helping the model better capture liver tumors and fine structures. The designed spatial attention module is implemented through two gate signals related to liver and tumors, as well as changing the size of convolutional kernels; Secondly, deep supervision is added behind the three layers of the decoder to assist the backbone network in feature learning and improve gradient propagation, enhancing robustness. RESULTS The method was testing on LITS, 3DIRCADb, and SLIVER datasets. For the liver, it obtained dice similarity coefficients of 97.03%, 96.11%, and 97.40%, surface dice of 81.98%, 82.53%, and 86.29%, 95% hausdorff distances of 8.96 mm, 8.26 mm, and 3.79 mm, and average surface distances of 1.54 mm, 1.19 mm, and 0.81 mm. Additionally, it also achieved precise tumor segmentation, which with dice scores of 87.81% and 87.50%, surface dice of 89.63% and 84.26%, 95% hausdorff distance of 12.96 mm and 16.55 mm, and average surface distances of 1.11 mm and 3.04 mm on LITS and 3DIRCADb, respectively. CONCLUSION The experimental results show that the proposed method is effective and superior to some other methods. Therefore, this method can provide technical support for liver and liver tumor segmentation in clinical practice.
Collapse
Affiliation(s)
- Sijing Yang
- School of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, China
| | - Yongbo Liang
- School of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, China
| | - Shang Wu
- School of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, China
| | - Peng Sun
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, China
| | - Zhencheng Chen
- School of Life and Environmental Science, Guilin University of Electronic Technology, Guilin, China
- School of Electronic Engineering and Automation, Guilin University of Electronic Technology, Guilin, China
- Guangxi Colleges and Universities Key Laboratory of Biomedical Sensors and Intelligent Instruments, Guilin, China
- Guangxi Engineering Technology Research Center of Human Physiological Information Noninvasive Detection, Guilin, China
| |
Collapse
|
9
|
Wang J, Peng Y, Jing S, Han L, Li T, Luo J. A deep-learning approach for segmentation of liver tumors in magnetic resonance imaging using UNet+. BMC Cancer 2023; 23:1060. [PMID: 37923988 PMCID: PMC10623778 DOI: 10.1186/s12885-023-11432-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/21/2023] [Indexed: 11/06/2023] Open
Abstract
OBJECTIVE Radiomic and deep learning studies based on magnetic resonance imaging (MRI) of liver tumor are gradually increasing. Manual segmentation of normal hepatic tissue and tumor exhibits limitations. METHODS 105 patients diagnosed with hepatocellular carcinoma were retrospectively studied between Jan 2015 and Dec 2020. The patients were divided into three sets: training (n = 83), validation (n = 11), and internal testing (n = 11). Additionally, 9 cases were included from the Cancer Imaging Archive as the external test set. Using the arterial phase and T2WI sequences, expert radiologists manually delineated all images. Using deep learning, liver tumors and liver segments were automatically segmented. A preliminary liver segmentation was performed using the UNet + + network, and the segmented liver mask was re-input as the input end into the UNet + + network to segment liver tumors. The false positivity rate was reduced using a threshold value in the liver tumor segmentation. To evaluate the segmentation results, we calculated the Dice similarity coefficient (DSC), average false positivity rate (AFPR), and delineation time. RESULTS The average DSC of the liver in the validation and internal testing sets was 0.91 and 0.92, respectively. In the validation set, manual and automatic delineation took 182.9 and 2.2 s, respectively. On an average, manual and automatic delineation took 169.8 and 1.7 s, respectively. The average DSC of liver tumors was 0.612 and 0.687 in the validation and internal testing sets, respectively. The average time for manual and automatic delineation and AFPR in the internal testing set were 47.4 s, 2.9 s, and 1.4, respectively, and those in the external test set were 29.5 s, 4.2 s, and 1.6, respectively. CONCLUSION UNet + + can automatically segment normal hepatic tissue and liver tumors based on MR images. It provides a methodological basis for the automated segmentation of liver tumors, improves the delineation efficiency, and meets the requirement of extraction set analysis of further radiomics and deep learning.
Collapse
Affiliation(s)
- Jing Wang
- Department of General medicine, The First Medical Center Department of Chinese PLA General Hospital, Peking, 100039, China
| | - Yanyang Peng
- Department of Radiology, First Medical Center of General Hospital of People's Liberation Army, Peking, China
| | - Shi Jing
- Department of Oncology, Huaihe Hospital, Henan University, Kaifeng, 475000, China
| | - Lujun Han
- Department of Radiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Cancer for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510030, China.
- Translational Medical Center of Huaihe Hospital, Henan University, 115 West Gate Street, Kaifeng, 475000, China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China.
- Translational Medical Center of Huaihe Hospital, Henan University, 115 West Gate Street, Kaifeng, 475000, China.
| | - Junpeng Luo
- Translational Medical Center of Huaihe Hospital, Henan University, 115 West Gate Street, Kaifeng, 475000, China.
- Academy for Advanced Interdisciplinary Studies, Henan University, Zhengzhou, 450046, China.
| |
Collapse
|