1
|
Eraghi SH, Toofani A, Guilani RJA, Ramezanpour S, Bijma NN, Sedaghat A, Yasamandaryaei A, Gorb S, Rajabi H. Basal complex: a smart wing component for automatic shape morphing. Commun Biol 2023; 6:853. [PMID: 37591993 PMCID: PMC10435446 DOI: 10.1038/s42003-023-05206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/02/2023] [Indexed: 08/19/2023] Open
Abstract
Insect wings are adaptive structures that automatically respond to flight forces, surpassing even cutting-edge engineering shape-morphing systems. A widely accepted but not yet explicitly tested hypothesis is that a 3D component in the wing's proximal region, known as basal complex, determines the quality of wing shape changes in flight. Through our study, we validate this hypothesis, demonstrating that the basal complex plays a crucial role in both the quality and quantity of wing deformations. Systematic variations of geometric parameters of the basal complex in a set of numerical models suggest that the wings have undergone adaptations to reach maximum camber under loading. Inspired by the design of the basal complex, we develop a shape-morphing mechanism that can facilitate the shape change of morphing blades for wind turbines. This research enhances our understanding of insect wing biomechanics and provides insights for the development of simplified engineering shape-morphing systems.
Collapse
Affiliation(s)
- Sepehr H Eraghi
- Mechanical Intelligence (MI) Research Group, South Bank Applied BioEngineering Research (SABER), School of Engineering, London South Bank University, London, UK
| | - Arman Toofani
- Mechanical Intelligence (MI) Research Group, South Bank Applied BioEngineering Research (SABER), School of Engineering, London South Bank University, London, UK
| | - Ramin J A Guilani
- Mechanical Intelligence (MI) Research Group, South Bank Applied BioEngineering Research (SABER), School of Engineering, London South Bank University, London, UK
- Faculty of Mechanical Engineering, University of Guilan, Rasht, Iran
| | - Shayan Ramezanpour
- Mechanical Intelligence (MI) Research Group, South Bank Applied BioEngineering Research (SABER), School of Engineering, London South Bank University, London, UK
| | - Nienke N Bijma
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany
| | - Alireza Sedaghat
- Department of Mechanical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Armin Yasamandaryaei
- Department of Mechanical Engineering, Lahijan Branch, Islamic Azad University, Lahijan, Iran
| | - Stanislav Gorb
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Kiel, Germany
| | - Hamed Rajabi
- Mechanical Intelligence (MI) Research Group, South Bank Applied BioEngineering Research (SABER), School of Engineering, London South Bank University, London, UK.
- Division of Mechanical Engineering and Design, School of Engineering, London South Bank University, London, UK.
| |
Collapse
|
2
|
Rajabi H, Dirks JH, Gorb SN. Insect wing damage: causes, consequences and compensatory mechanisms. J Exp Biol 2020; 223:223/9/jeb215194. [DOI: 10.1242/jeb.215194] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
ABSTRACT
The evolution of wings has played a key role in the success of insect species, allowing them to diversify to fill many niches. Insect wings are complex multifunctional structures, which not only have to withstand aerodynamic forces but also need to resist excessive stresses caused by accidental collisions. This Commentary provides a summary of the literature on damage-reducing morphological adaptations in wings, covering natural causes of wing collisions, their impact on the structural integrity of wings and associated consequences for both insect flight performance and life expectancy. Data from the literature and our own observations suggest that insects have evolved strategies that (i) reduce the likelihood of wing damage and (ii) allow them to cope with damage when it occurs: damage-related fractures are minimized because wings evolved to be damage tolerant and, in the case of wing damage, insects compensate for the reduced aerodynamic efficiency with dedicated changes in flight kinematics.
Collapse
Affiliation(s)
- Hamed Rajabi
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 1-9, D-24098 Kiel, Germany
| | - Jan-Henning Dirks
- Biomimetics-Innovation-Centre, Hochschule Bremen–City University of Applied Sciences, 28199 Bremen, Germany
| | - Stanislav N. Gorb
- Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 1-9, D-24098 Kiel, Germany
| |
Collapse
|
3
|
Huang ST, Wang HR, Yang WQ, Si YC, Wang YT, Sun ML, Qi X, Bai Y. Phylogeny of Libellulidae (Odonata: Anisoptera): comparison of molecular and morphology-based phylogenies based on wing morphology and migration. PeerJ 2020; 8:e8567. [PMID: 32095371 PMCID: PMC7025703 DOI: 10.7717/peerj.8567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 01/14/2020] [Indexed: 11/22/2022] Open
Abstract
Background Establishing the species limits and resolving phylogenetic relationships are primary goals of taxonomists and evolutionary biologists. At present, a controversial question is about interspecific phylogenetic information in morphological features. Are the interspecific relationships established based on genetic information consistent with the traditional classification system? To address these problems, this study analyzed the wing shape structure of 10 species of Libellulidae, explored the relationship between wing shape and dragonfly behavior and living habits, and established an interspecific morphological relationship tree based on wing shape data. By analyzing the sequences of mitochondrial COI gene and the nuclear genes 18S, 28S rRNA and ITS in 10 species of dragonflies, the interspecific relationship was established. Method The wing shape information of the male forewings and hindwings was obtained by the geometric morphometrics method. The inter-species wing shape relationship was obtained by principal component analysis (PCA) in MorphoJ1.06 software. The inter-species wing shape relationship tree was obtained by cluster analysis (UPGMA) using Mesquite 3.2 software. The COI, 18S, ITS and 28S genes of 10 species dragonfly were blasted and processed by BioEdit v6 software. The Maximum Likelihood(ML) tree was established by raxmlGUI1.5b2 software. The Bayes inference (BI) tree was established by MrBayes 3.2.6 in Geneious software. Results The main difference in forewings among the 10 species of dragonfly was the apical, radial and discoidal regions dominated by the wing nodus. In contrast, the main difference among the hindwings was the apical and anal regions dominated by the wing nodus. The change in wing shape was closely related to the ability of dragonfly to migrate. The interspecific relationship based on molecular data showed that the species of Orthetrum genus branched independently of the other species. Compared to the molecular tree of 10 species, the wing shape clustering showed some phylogenetic information on the forewing shape (with large differences on the forewing shape tree vs. molecular tree), and there was no interspecific phylogenetic information of the hindwing shape tree vs. molecular tree. Conclusion The dragonfly wing shape characteristics are closely related to its migration ability. Species with strong ability to migrate have the forewing shape that is longer and narrower, and have larger anal region, whereas the species that prefer short-distance hovering or standing still for a long time have forewing that are wider and shorter, and the anal region is smaller. Integrating morphological and molecular data to evaluate the relationship among dragonfly species shows there is some interspecific phylogenetic information in the forewing shape and none in the hindwing shape. The forewing and hindwing of dragonflies exhibit an inconsistent pattern of morphological changes in different species.
Collapse
Affiliation(s)
- Shu-Ting Huang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Hai-Rui Wang
- Sports Science Institute, Taizhou University, Taizhou, Zhejiang, China
| | - Wan-Qin Yang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Ya-Chu Si
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Yu-Tian Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Meng-Lian Sun
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Xin Qi
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| | - Yi Bai
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang, China
| |
Collapse
|
4
|
Rajabi H, Stamm K, Appel E, Gorb SN. Micro-morphological adaptations of the wing nodus to flight behaviour in four dragonfly species from the family Libellulidae (Odonata: Anisoptera). ARTHROPOD STRUCTURE & DEVELOPMENT 2018; 47:442-448. [PMID: 29339328 DOI: 10.1016/j.asd.2018.01.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Revised: 01/03/2018] [Accepted: 01/09/2018] [Indexed: 06/07/2023]
Abstract
Adult dragonflies can be divided into two major groups, perchers and fliers, exhibiting notably different flight behaviour. Previous studies have yielded conflicting results regarding the link between the wing macro-morphology and flight style in these two groups. In this study, we present the first systematic investigation of the micro-morphological differences of wings of percher and flier dragonflies in four closely related species from the family Libellulidae. Our results suggest that the shape and material composition of wing microstructural components and, in particular, the nodus are adapted to facilitate the specific wing functioning in fliers and perchers. The findings further indicate a decreasing trend in the area proportion of the soft resilin-dominated cuticle in the nodus in the series of species from typical perchers to typical fliers. Such a reduction in the resilin proportion in the nodus of fliers is associated with an increase in the wing aspect ratio. The knot-shaped protrusion at the nodus of perchers, which becomes notably smaller in that of strong fliers, is likely to act as a mechanical stopper, avoiding large wing displacements. This study aims to develop a novel framework for future research on the relationship between wing morphology and flight behaviour in dragonflies.
Collapse
Affiliation(s)
- H Rajabi
- Institute of Zoology, Functional Morphology and Biomechanics, Kiel University, Kiel, Germany.
| | - K Stamm
- Institute of Zoology, Functional Morphology and Biomechanics, Kiel University, Kiel, Germany
| | - E Appel
- Institute of Zoology, Functional Morphology and Biomechanics, Kiel University, Kiel, Germany
| | - S N Gorb
- Institute of Zoology, Functional Morphology and Biomechanics, Kiel University, Kiel, Germany
| |
Collapse
|
5
|
Differences in Nanostructure and Hydrophobicity of Cicada ( Cryptotympana atrata) Forewing Surface with the Distribution of Precipitation. Appl Bionics Biomech 2018; 2018:5305847. [PMID: 29849761 PMCID: PMC5903195 DOI: 10.1155/2018/5305847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/02/2018] [Indexed: 12/02/2022] Open
Abstract
Although the cicada wing has a variety of functions and the nanostructure and surface properties of many species have been extensively investigated, there are no reports investigating diversity of nanostructures and wetting properties within a single species collected at locations with different rainfall conditions. In this study, the hydrophobicity and nanostructure dimensions of the forewing surface of Cryptotympana atrata were measured, based on specimens collected from 12 distributions with varying precipitation averages in China and Japan. The relationships among hydrophobicity, nanostructures, and precipitation were analyzed, and the adaption of hydrophobic nanostructures under different wet environments is discussed. The precipitation of locations in the years the samples of C. atrata were collected only has an effect on the diameter and spacing of wing surface nanostructure, and the multiple years of precipitation may have an influence on the basic diameter and spacing, as well as the height of protrusions. The rougher the wing surface, the stronger the hydrophobicity which was observed from samples taken where the rainfall conditions of the collection years are high. To our knowledge, this is one special example providing evidence of hydrophobic nanostructures found on a biological surface of a single species which shows adaption for specific wet environments.
Collapse
|
6
|
Yeo J, Jung GS, Martín-Martínez FJ, Ling S, Gu GX, Qin Z, Buehler MJ. Materials-by-Design: Computation, Synthesis, and Characterization from Atoms to Structures. PHYSICA SCRIPTA 2018; 93:053003. [PMID: 31866694 PMCID: PMC6924929 DOI: 10.1088/1402-4896/aab4e2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In the 50 years that succeeded Richard Feynman's exposition of the idea that there is "plenty of room at the bottom" for manipulating individual atoms for the synthesis and manufacturing processing of materials, the materials-by-design paradigm is being developed gradually through synergistic integration of experimental material synthesis and characterization with predictive computational modeling and optimization. This paper reviews how this paradigm creates the possibility to develop materials according to specific, rational designs from the molecular to the macroscopic scale. We discuss promising techniques in experimental small-scale material synthesis and large-scale fabrication methods to manipulate atomistic or macroscale structures, which can be designed by computational modeling. These include recombinant protein technology to produce peptides and proteins with tailored sequences encoded by recombinant DNA, self-assembly processes induced by conformational transition of proteins, additive manufacturing for designing complex structures, and qualitative and quantitative characterization of materials at different length scales. We describe important material characterization techniques using numerous methods of spectroscopy and microscopy. We detail numerous multi-scale computational modeling techniques that complements these experimental techniques: DFT at the atomistic scale; fully atomistic and coarse-grain molecular dynamics at the molecular to mesoscale; continuum modeling at the macroscale. Additionally, we present case studies that utilize experimental and computational approaches in an integrated manner to broaden our understanding of the properties of two-dimensional materials and materials based on silk and silk-elastin-like proteins.
Collapse
Affiliation(s)
- Jingjie Yeo
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Institute of High Performance Computing, Agency for Science, Technology and Research (A*STAR), Singapore 138632
| | - Gang Seob Jung
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Francisco J. Martín-Martínez
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shengjie Ling
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Grace X. Gu
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhao Qin
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Markus J. Buehler
- Laboratory for Atomistic and Molecular Mechanics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
7
|
Deformation behavior of dragonfly-inspired nodus structured wing in gliding flight through experimental visualization approach. Sci Rep 2018; 8:5751. [PMID: 29636549 PMCID: PMC5893574 DOI: 10.1038/s41598-018-24237-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 03/28/2018] [Indexed: 11/08/2022] Open
Abstract
Dragonfly has excellent flight performance and maneuverability due to the complex vein structure of wing. In this research, nodus as an important structural element of the dragonfly wing is investigated through an experimental visualization approach. Three vein structures were fabricated as, open-nodus structure, closed-nodus structure (with a flex-limiter) and rigid wing. The samples were conducted in a wind tunnel with a high speed camera to visualize the deformation of wing structure in order to study the function of nodus structured wing in gliding flight. According to the experimental results, nodus has a great influence on the flexibility of the wing structure. Moreover, the closed-nodus wing (with a flex-limiter) enables the vein structure to be flexible without losing the strength and rigidity of the joint. These findings enhance the knowledge of insect-inspired nodus structured wing and facilitate the application of Micro Air Vehicle (MAV) in gliding flight.
Collapse
|
8
|
Rajabi H, Ghoroubi N, Stamm K, Appel E, Gorb S. Dragonfly wing nodus: A one-way hinge contributing to the asymmetric wing deformation. Acta Biomater 2017; 60:330-338. [PMID: 28739543 DOI: 10.1016/j.actbio.2017.07.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 07/18/2017] [Accepted: 07/20/2017] [Indexed: 10/19/2022]
Abstract
Dragonfly wings are highly specialized locomotor systems, which are formed by a combination of several structural components. The wing components, also known as structural elements, are responsible for the various aspects of the wing functionality. Considering the complex interactions between the wing components, modelling of the wings as a whole is only possible with inevitable huge oversimplifications. In order to overcome this difficulty, we have recently proposed a new approach to model individual components of complex wings comparatively. Here, we use this approach to study nodus, a structural element of dragonfly wings which has been less studied to date. Using a combination of several imaging techniques including scanning electron microscopy (SEM), wide-field fluorescence microscopy (WFM), confocal laser scanning microscopy (CLSM) and micro-computed tomography (micro-CT) scanning, we aim to characterize the spatial morphology and material composition of fore- and hindwing nodi of the dragonfly Brachythemis contaminata. The microscopy results show the presence of resilin in the nodi, which is expected to help the deformability of the wings. The computational results based on three-dimensional (3D) structural data suggest that the specific geometry of the nodus restrains its displacements when subjected to pressure on the ventral side. This effect, resulting from an interlocking mechanism, is expected to contribute to the dorso-ventral asymmetry of wing deformation and to provide a higher resistance to aerodynamic forces during the downstroke. Our results provide an important step towards better understanding of the structure-property-function relationship in dragonfly wings. STATEMENT OF SIGNIFICANCE In this study, we investigate the wing nodus, a specialized wing component in dragonflies. Using a combination of modern imaging techniques, we demonstrate the presence of resilin in the nodus, which is expected to facilitate the wing deformability in flight. The specific geometry of the nodus, however, seems to restrain its displacements when subjected to pressure on the ventral side. This effect, resulting from an interlocking mechanism, is suggested to contribute to dorso-ventral asymmetry of wing deformations and to provide a higher resistance to aerodynamic forces during the downstroke. Our results provide an important step towards better understanding of the structure-property-function relationship in dragonfly wings and might help to design more efficient wings for biomimetic micro-air vehicles.
Collapse
|
9
|
Rajabi H, Ghoroubi N, Malaki M, Darvizeh A, Gorb SN. Basal Complex and Basal Venation of Odonata Wings: Structural Diversity and Potential Role in the Wing Deformation. PLoS One 2016; 11:e0160610. [PMID: 27513753 PMCID: PMC4981387 DOI: 10.1371/journal.pone.0160610] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 07/21/2016] [Indexed: 11/23/2022] Open
Abstract
Dragonflies and damselflies, belonging to the order Odonata, are known to be excellent fliers with versatile flight capabilities. The ability to fly over a wide range of speeds, high manoeuvrability and great agility are a few characteristics of their flight. The architecture of the wings and their structural elements have been found to play a major role in this regard. However, the precise influence of individual wing components on the flight performance of these insects remains unknown. The design of the wing basis (so called basal complex) and the venation of this part are responsible for particular deformability and specific shape of the wing blade. However, the wing bases are rather different in representatives of different odonate groups. This presumably reflects the dimensions of the wings on one hand, and different flight characteristics on the other hand. In this article, we develop the first three-dimensional (3D) finite element (FE) models of the proximal part of the wings of typical representatives of five dragonflies and damselflies families. Using a combination of the basic material properties of insect cuticle, a linear elastic material model and a nonlinear geometric analysis, we simulate the mechanical behaviour of the wing bases. The results reveal that although both the basal venation and the basal complex influence the structural stiffness of the wings, it is only the latter which significantly affects their deformation patterns. The use of numerical simulations enabled us to address the role of various wing components such as the arculus, discoidal cell and triangle on the camber formation in flight. Our study further provides a detailed representation of the stress concentration in the models. The numerical analysis presented in this study is not only of importance for understanding structure-function relationship of insect wings, but also might help to improve the design of the wings for biomimetic micro-air vehicles (MAVs).
Collapse
Affiliation(s)
- H. Rajabi
- Institute of Zoology, Functional Morphology and Biomechanics, Kiel University, Kiel, Germany
- * E-mail:
| | - N. Ghoroubi
- Young Researchers Club, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - M. Malaki
- Department of Mechanical Engineering, The University of Guilan, Rasht, Iran
| | - A. Darvizeh
- Department of Mechanical Engineering, Anzali Branch, Islamic Azad University, Bandar Anzali, Iran
| | - S. N. Gorb
- Institute of Zoology, Functional Morphology and Biomechanics, Kiel University, Kiel, Germany
| |
Collapse
|
10
|
A Review of Natural Joint Systems and Numerical Investigation of Bio-Inspired GFRP-to-Steel Joints. MATERIALS 2016; 9:ma9070566. [PMID: 28773688 PMCID: PMC5456843 DOI: 10.3390/ma9070566] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/20/2016] [Accepted: 07/01/2016] [Indexed: 11/16/2022]
Abstract
There are a great variety of joint types used in nature which can inspire engineering joints. In order to design such biomimetic joints, it is at first important to understand how biological joints work. A comprehensive literature review, considering natural joints from a mechanical point of view, was undertaken. This was used to develop a taxonomy based on the different methods/functions that nature successfully uses to attach dissimilar tissues. One of the key methods that nature uses to join dissimilar materials is a transitional zone of stiffness at the insertion site. This method was used to propose bio-inspired solutions with a transitional zone of stiffness at the joint site for several glass fibre reinforced plastic (GFRP) to steel adhesively bonded joint configurations. The transition zone was used to reduce the material stiffness mismatch of the joint parts. A numerical finite element model was used to identify the optimum variation in material stiffness that minimises potential failure of the joint. The best bio-inspired joints showed a 118% increase of joint strength compared to the standard joints.
Collapse
|