1
|
Wang D, Qiang Y, Guo J, Vannier J, Song Z, Peng J, Zhang B, Sun J, Yu Y, Zhang Y, Zhang T, Yang X, Han J. Early evolution of the ecdysozoan body plan. eLife 2024; 13:RP94709. [PMID: 38976315 PMCID: PMC11231812 DOI: 10.7554/elife.94709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024] Open
Abstract
Extant ecdysozoans (moulting animals) are represented by a great variety of soft-bodied or articulated organisms that may or may not have appendages. However, controversies remain about the vermiform nature (i.e. elongated and tubular) of their ancestral body plan. We describe here Beretella spinosa gen. et sp. nov. a tiny (maximal length 3 mm) ecdysozoan from the lowermost Cambrian, Yanjiahe Formation, South China, characterized by an unusual sack-like appearance, single opening, and spiny ornament. Beretella spinosa gen. et sp. nov has no equivalent among animals, except Saccorhytus coronarius, also from the basal Cambrian. Phylogenetic analyses resolve both fossil species as a sister group (Saccorhytida) to all known Ecdysozoa, thus suggesting that ancestral ecdysozoans may have been non-vermiform animals. Saccorhytids are likely to represent an early off-shot along the stem-line Ecdysozoa. Although it became extinct during the Cambrian, this animal lineage provides precious insight into the early evolution of Ecdysozoa and the nature of the earliest representatives of the group.
Collapse
Affiliation(s)
- Deng Wang
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University, Xi'an, China
| | - Yaqin Qiang
- School of Earth Science and Resources, Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, Chang'an University, Xi'an, China
| | - Junfeng Guo
- School of Earth Science and Resources, Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, Chang'an University, Xi'an, China
| | - Jean Vannier
- Université de Lyon, Université Claude Bernard Lyon 1, ENS de Lyon, CNRS, Laboratoire de Géologie de Lyon: Terre, Planètes, Environnement (CNRS-UMR 5276), Villeurbanne, France
| | - Zuchen Song
- School of Earth Science and Resources, Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, Chang'an University, Xi'an, China
| | - Jiaxin Peng
- School of Earth Science and Resources, Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, Chang'an University, Xi'an, China
| | - Boyao Zhang
- School of Earth Science and Resources, Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, Chang'an University, Xi'an, China
| | - Jie Sun
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University, Xi'an, China
- School of Earth Science and Resources, Key Laboratory of Western China's Mineral Resources and Geological Engineering, Ministry of Education, Chang'an University, Xi'an, China
| | - Yilun Yu
- Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiheng Zhang
- School of Information Science and Technology, Northwest University, Xi'an, China
| | - Tao Zhang
- School of Information Science and Technology, Northwest University, Xi'an, China
| | - Xiaoguang Yang
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University, Xi'an, China
| | - Jian Han
- State Key Laboratory of Continental Dynamics, Shaanxi Key Laboratory of Early Life & Environments and Department of Geology, Northwest University, Xi'an, China
| |
Collapse
|
2
|
Howard RJ, Edgecombe GD, Shi X, Hou X, Ma X. Ancestral morphology of Ecdysozoa constrained by an early Cambrian stem group ecdysozoan. BMC Evol Biol 2020; 20:156. [PMID: 33228518 PMCID: PMC7684930 DOI: 10.1186/s12862-020-01720-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 11/08/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Ecdysozoa are the moulting protostomes, including arthropods, tardigrades, and nematodes. Both the molecular and fossil records indicate that Ecdysozoa is an ancient group originating in the terminal Proterozoic, and exceptional fossil biotas show their dominance and diversity at the beginning of the Phanerozoic. However, the nature of the ecdysozoan common ancestor has been difficult to ascertain due to the extreme morphological diversity of extant Ecdysozoa, and the lack of early diverging taxa in ancient fossil biotas. RESULTS Here we re-describe Acosmia maotiania from the early Cambrian Chengjiang Biota of Yunnan Province, China and assign it to stem group Ecdysozoa. Acosmia features a two-part body, with an anterior proboscis bearing a terminal mouth and muscular pharynx, and a posterior annulated trunk with a through gut. Morphological phylogenetic analyses of the protostomes using parsimony, maximum likelihood and Bayesian inference, with coding informed by published experimental decay studies, each placed Acosmia as sister taxon to Cycloneuralia + Panarthropoda-i.e. stem group Ecdysozoa. Ancestral state probabilities were calculated for key ecdysozoan nodes, in order to test characters inferred from fossils to be ancestral for Ecdysozoa. Results support an ancestor of crown group ecdysozoans sharing an annulated vermiform body with a terminal mouth like Acosmia, but also possessing the pharyngeal armature and circumoral structures characteristic of Cambrian cycloneuralians and lobopodians. CONCLUSIONS Acosmia is the first taxon placed in the ecdysozoan stem group and provides a constraint to test hypotheses on the early evolution of Ecdysozoa. Our study suggests acquisition of pharyngeal armature, and therefore a change in feeding strategy (e.g. predation), may have characterised the origin and radiation of crown group ecdysozoans from Acosmia-like ancestors.
Collapse
Affiliation(s)
- Richard J Howard
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming, 650500, China
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, TR10 9TA, UK
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Gregory D Edgecombe
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming, 650500, China
- Department of Earth Sciences, The Natural History Museum, Cromwell Road, London, SW7 5BD, UK
| | - Xiaomei Shi
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming, 650500, China
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Chenggong Campus, Kunming, 650500, China
| | - Xianguang Hou
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming, 650500, China.
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Chenggong Campus, Kunming, 650500, China.
| | - Xiaoya Ma
- MEC International Joint Laboratory for Palaeobiology and Palaeoenvironment, Yunnan University, Chenggong Campus, Kunming, 650500, China.
- Yunnan Key Laboratory for Palaeobiology, Institute of Palaeontology, Yunnan University, Chenggong Campus, Kunming, 650500, China.
- Centre for Ecology and Conservation, University of Exeter, Penryn Campus, Cornwall, TR10 9TA, UK.
| |
Collapse
|